Diurnal variation of mean mixing depths in different months at Delhi

MANJU KUMARI
Centre for Atmospheric and Fluids Sciences,
Indian Institute of Technology, New Delhi
(Received 29 June 1982)

1. Introduction

A study of dispersion parameters for the city of Delhi, with the help of meteorological parameters is being attempted. One of the important parameters which was found essential for this approach is the diurnal variation of the depth of boundary layer or mixing depth for all the twelve months of the year. So far, the diurnal variation of mixing depth has been presented by Padmanabhamurty and Mandal (1976) for six winter months, October 1975 to March 1976, for Delhi. Results are graphically available only for the month of Jan. 1976. Based on five-year data, the present study obtains mean monthly diurnal variation of the mixing depth for the city of Delhi, over the whole year. According to Shukla (1981), the variance of climatological mean is smaller for tropics than for mid-latitudes. Therefore, climatological mean monthly diurnal variation of mixing depths obtained from monthly mean is likely to give good estimates of the diurnal variation of mixing depths.

2. Procedure

Method of Holzworth (1967) has been used for the estimation of mixing depths. To take into consideration, the pressure differences with the sea level, tephigrams have been used to estimate the same. Ten-year (1958-76) climatological mean surface temperatures (Mani 1980) have been used. Urban heat island intensities have been incorporated into surface temperatures from the available three sources:

(1) Krishnanand and Maske (1981), (2) Koteswaram (1981) and (3) Padmanabhamurty and Bahl (1982), and mixing depths, so obtained were plotted (Fig. 1). Mixing depth from sources (1) and (3) shows similarity in its pattern and magnitude. The values of the mixing depths obtained through source (2) were found to be very high.

For the present study, heat island intensities obtained by Krishnanand and Maske (1981) have been found most suitable as it represents mean monthly mixing depths for the ten months and gives a reasonable estimates of mixing heights. Due to non-availability of the same for the month of October and November alternate methods were used.

Mixing depths for the four months, December 1971 and 1972 and May and June 1971, could not be calculated because the surface temperatures were colder than the surface temperature from RS observations and Holzworth’s technique could not be applied.

3. Discussion

As expected, the mixing depth increases from a minimum in the morning to a maximum around 15 IST and decreases thereafter. This response is clearly due to the diurnal variation in surface temperature. Figs. 2 (a-d) show the diurnal pattern with the standard deviation for four representative months of the seasons. Winter months are characterised by low values of mixing depths, e.g., December (Table 1) shows the minimum value of both the maximum and minimum mixing depth. Summer month shows comparatively high value of maximum mixing depth among all the twelve months. Monsoon months show high values of morning depths and comparatively low values of after-
Fig. 1. Comparison of the mixing depths obtained from three different heat island intensities for March 1972.

Figs. 2(a-d). Diurnal variation of mean (1968-72) monthly mixing depth for the four representative months (Oct, Sep, Mar and Feb) of the seasons.
TABLE I

Comparison of the minimum and maximum mixing depths

<table>
<thead>
<tr>
<th>Month</th>
<th>Minimum mixing depth (m)</th>
<th>Maximum mixing depth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present study</td>
<td>Paper I*</td>
</tr>
<tr>
<td>Oct 1970</td>
<td>270</td>
<td>85</td>
</tr>
<tr>
<td>Nov 1970</td>
<td>137</td>
<td>50</td>
</tr>
<tr>
<td>Dec 1970</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>Oct 1971</td>
<td>337</td>
<td>100</td>
</tr>
<tr>
<td>Nov 1971</td>
<td>118</td>
<td>70</td>
</tr>
<tr>
<td>Dec 1971</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Jan 1971</td>
<td>168</td>
<td>90</td>
</tr>
<tr>
<td>Feb 1971</td>
<td>201</td>
<td>100</td>
</tr>
<tr>
<td>Mar 1971</td>
<td>341</td>
<td>70</td>
</tr>
<tr>
<td>Oct 1972</td>
<td>269</td>
<td>100</td>
</tr>
<tr>
<td>Nov 1972</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>Dec 1972</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Jan 1972</td>
<td>41.5</td>
<td>60</td>
</tr>
<tr>
<td>Feb 1972</td>
<td>445</td>
<td>110</td>
</tr>
<tr>
<td>Mar 1972</td>
<td>309</td>
<td>100</td>
</tr>
</tbody>
</table>

Averages*

<table>
<thead>
<tr>
<th>Month</th>
<th>Average</th>
<th>Paper I*</th>
<th>Paper II*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>99</td>
<td>85</td>
<td>100</td>
</tr>
<tr>
<td>Feb</td>
<td>296</td>
<td>109</td>
<td>1234</td>
</tr>
<tr>
<td>Mar</td>
<td>307</td>
<td>80</td>
<td>2405</td>
</tr>
<tr>
<td>Apr</td>
<td>157</td>
<td>500</td>
<td>2856</td>
</tr>
<tr>
<td>May</td>
<td>154</td>
<td></td>
<td>2771</td>
</tr>
<tr>
<td>Jun</td>
<td>300</td>
<td></td>
<td>2791</td>
</tr>
<tr>
<td>Jul</td>
<td>443</td>
<td></td>
<td>1703</td>
</tr>
<tr>
<td>Aug</td>
<td>441</td>
<td>150</td>
<td>1465</td>
</tr>
<tr>
<td>Sep</td>
<td>328</td>
<td></td>
<td>1666</td>
</tr>
<tr>
<td>Oct</td>
<td>297</td>
<td>90</td>
<td>50</td>
</tr>
<tr>
<td>Nov</td>
<td>126</td>
<td>20</td>
<td>1789</td>
</tr>
<tr>
<td>Dec</td>
<td>97</td>
<td>50</td>
<td>1026</td>
</tr>
</tbody>
</table>

noon mixing depths, e.g., July (Table 1) shows the maximum value of morning mixing depth. Partially, it could be attributed to the cloudiness during the season and the lack of consideration of moisture content in the analysis technique.

Diurnal variation of mixing depth shows asymmetry around the maximum mixing depth, i.e., the rate of rise in mixing depth before noon is slower than the rate of fall of mixing depth after noon. January shows maximum asymmetry among winter months and June shows maximum asymmetry among the summer and monsoon months. March is a symmetric month.

In general, radiational heating and cooling may play an important role in the asymmetry mentioned above. The particulates and aerosols present in the environment backscat
tes significant amount of solar energy during the daytime and therefore, delay the attainment of maximum surface temperature. While considering the transmission of longwave radiation (night time) through the atmosphere the same particulate matter does not allow much of the long wave radiation and also contributes the counter radiations. Thus, the radiational heating and cooling effects, to analyse the aforementioned asymmetries in the different months.

Results of the present study have been compared with the available months and year of the mixing depths obtained by Padmanabhamurty and Mandal (1976, 1979) hereinafter referred as paper I and Vittalmurty et al. (1981) hereinafter referred as paper II. Results of the studies and their comparison is presented in Table 1.

In general, morning mixing depths of present study have been found to be quite higher than paper I and afternoon mixing heights were found to be slightly higher than paper I. The reasons for the same can be given as below:

(i) Ten-year (1958-67) climatological mean surface temperatures have been used in the present study which could be higher than the surface temperatures of the years under comparative study.

(ii) Minimum 5 mb pressure can be read accurately on a tephigram and a difference in 5 mb can cause a maximum difference of 100 m in mixing depths.

3 (a). The use of a different nocturnal urban heat island effect (which is the basis of morning mixing depth) in the present study, than the other studies may lead to the different morning mixing heights.
3 (b). The use of 1 deg. C as the effect of urban heat island at maximum temperature epoch for all the twelve months following Krishnanand and Maske (1981) leads to a somewhat higher maximum depths than the other studies.

4. Conclusions

Based on five years data, diurnal variation of the mean mixing depths in different months has been estimated for the city of Delhi over the whole year. Results are discussed and compared with the measurements by the other authors.

Acknowledgements

Author is highly thankful to Prof. M. P. Singh, for his constant support and inspiration for the work. Many thanks are due to Dr. (Mrs.) N. Raghavan for her valuable suggestions and help provided during the present work. It is a pleasure to thank the referee whose suggestions and interest have helped to improve the paper from its earlier version. Author is also thankful to India Meteorological Department, Delhi for providing the needful data. Financial support, during the work has been provided by N.C.E.R.T., New Delhi.

References

Bahl, H.D. and Padmanabhamurty, B., 1982, some physical features on heat and humidity islands at Delhi, Mazras, 33, 2, 211-216.

Krishnanand and Maske, S. J., 1981, Mean heat island intensities at Delhi assessed from urban climatological data, Mazras, 32, 3, 269-272.

Mandal, B.B. and Padmanabhamurty, B., 1976, A note on pollution potential at Delhi during October 75-March 76, Vayamandal, 6, 2 & 30, 58-60.

Mandal, B.B. and Padmanabhamurty, B., 1979, Climatology of inversions, mixing depths and ventilation coefficients at Delhi, Mazras, 30, 4, 473-478.

Mani, A., 1980, Handbook of solar radiation data for India.

Shukla, J., 1981, Predictability of the tropical atmosphere. ECMWF workshop on tropical meteorology and its effects on medium range weather prediction at middle latitudes, pp. 21-51.