Heat and momentum fluxes and their spectra over the western coast of India during Monex-1979

U. S. SINGH, R. K. SINGH and R. S. SINGH*
Dept. of Geophys., Banaras Hindu Univ., Varanasi
(Received 12 December 1986)

1. Introduction

The Indian summer monsoon is the largest local perturbation embedded in the general circulation of the atmosphere and the most important seasonal standing eddies. During the monsoon period, heat and momentum sources are disturbed due to large scale cloudiness. Hence, the study of heat and momentum fluxes is of vital importance. Among the several investigators Sankar Rao (1962), Sankar Rao and Ramanadham (1963), Singh and Singh (1987) noted that the transient local eddies play a minor role in heat and momentum transports. Bavadekar and Mooley (1978), Appa Rao (1981, 1985) observed that the moisture transport over Indian subcontinent is essentially due to mean circulation.

In the present paper we have attempted to compute the heat and momentum transport using Monex-79 data and examined the possible existence of periodicity and its variation with latitude over west coast of India.

2. Evaluation of parameters

2.1. List of symbols

\[u = \text{zonal component of wind}, \]
\[v = \text{meridional component of wind}, \]
\[T = \text{temperature (°C)}, \]
\[c_p = \text{specific heat of air at constant pressure}, \]
\[P_0 = \text{pressure at the earth surface}, \]
\[P = \text{pressure}, \]
\[Q = \text{time averaged total meridional heat flux per unit time}, \]
\[X = \text{humidity mixing ratio and} \]
\[L = \text{latent heat of vaporization}. \]

*Present affiliation: Central Arid Zone Research Institute, Jodhpur.
2.2. Computation of fluxes

The time averaged total meridional flux of heat per unit time across a zonal plane of length unity and pressure interval 1000 mb (or surface) to 300 mb accomplished by the atmosphere at any station is given by:

\[
Q = c_p/g\int_{P_0}^{P_0} \bar{V} T \, dP + L/g\int_{300}^{P_0} \bar{V}X \, dP \tag{1}
\]

where the bar denotes the time average. If the deviation from time-mean is denoted by prime, then:

\[
(\prime) = (\bar{)} + (\bar{)}', \text{ hence,}
\]

\[
Q = c_p/g\int_{300}^{P_0} \bar{V} T \, dP + L/g\int_{300}^{P_0} \bar{V}X \, dP
\]

\[
+ c_p/g\int_{300}^{P_0} \bar{V}' T' \, dP + L/g\int_{300}^{P_0} \bar{V}'X' \, dP \tag{2}
\]

The first two terms on the right of Eqn. (2) measure the effect of mean meridional circulation and the standing eddies while the last two terms measure the local eddy flux of sensible and latent heat respectively.

The meridional flux of relative \(U\)-momentum at any station across a zonal plane of length unity and pressure interval 1000 mb (surface) to 300 mb is given by:

\[
M = 1/g\int_{300}^{P_0} \bar{V} \bar{U} \, dP
\]

\[
= 1/g\int_{300}^{P_0} \bar{V} U \, dP + 1/g\int_{300}^{P_0} \bar{V}' \bar{U}' \, dP \tag{3}
\]

The first term on the right of Eqn. (3) represents the flux of relative momentum due to mean meridional circulation and the standing eddies while the second term represents the local meridional eddy flux of relative momentum at any station. These vertically integrated local eddy fluxes were subjected to spectral analysis in time domain following Blackmon and Tukey (1958).
2.3. Data used

Daily aerological data at 00 GMT was obtained from Monex-79 (May through August) experiment over the western coastal stations of India to make the study of sensible heat, latent heat and momentum fluxes distribution in the vertical. The computations were performed from 1000 mb to 300 mb surfaces at 50 mb interval in the vertical.

3. Results

The computed fluxes and their vertical distribution are presented in Figs. 1-3. For better understanding of direction of the fluxes, the layer below 700 mb has been designated as layer A and that above 700 mb as layer B. The results of the spectral analysis are presented in Fig. 4.

The findings of the study are as follows:

(i) The sensible heat transport due to mean circulation over west coast of India (see Fig. 1) is an order of magnitude larger than the latent heat transport in layer A whereas the latent heat transport is insignificant and negligible in layer B.

(ii) In layer A (Figs. 1 and 2) the sensible and latent heat transport and the momentum transport due to mean circulation is northward, north of Goa and is changed to southward at Goa through Trivandrum over west coast of India due to influence of semi-permanent ridge across the Western Ghats.

(iii) In the layer A the intensity of eddy heat transport (Fig. 3) decreases with decreasing latitude whereas the northward eddy momentum transport (Fig. 2) increases with decreasing latitude north of west coast ridge and is changed to southward, the magnitude of which decreases with decreasing latitude over west coast of India. The northward latent heat and momentum transport due to local eddies in layer B gradually weakens with the increasing latitude over the west coast of India.

(iv) In general, the eddy latent heat transport is more than the eddy sensible heat transport at each level in the vertical over west coast of India during the monsoon season (Fig. 3). The ratio of seasonal mean eddy latent heat to the seasonal mean eddy sensible heat transport varies from 1.5 to 9 times over west coast of India whereas at Jodhpur, Santacruz and Mangalore, this ratio is decreased resulting into increase in seasonal mean eddy sensible heat transport by about 3 to 10 times above 500 mb surface. In the middle and upper troposphere, the transport of momentum due to seasonal mean eddies dominates over the seasonal mean circulation whereas in the
--- Eddy sensible heat ($c_p \overline{v' T'}/g$) --- Eddy latent heat ($L \overline{v' X'}/g$), Unit: $X 10^4 m^2 sec^{-1}$

Fig. 3. Vertical variation of mean eddy poleward flux of heat
HEAT & MOMENTUM FLUXES AND THEIR SPECTRA

Fig. 4. Variations of periodicities in different fluxes with latitude

lower troposphere the momentum transport due to seasonal mean circulation exceeds that of the seasonal mean eddy transport of momentum over west coast of India (Fig. 2).

(ii) The eddy latent heat flux shows larger periodicity (Fig. 4) as compared with the eddy sensible heat and eddy momentum flux over the west coast of India. These fluxes show similar variation with latitude which in general increases with decreasing latitude up to 10° N over the west coast of India during the summer monsoon season.

Acknowledgement

The financial support provided by India Meteorological Department under a Monex research project is gratefully acknowledged.

References

Bavadekar, S.N. and Mooley, D.A., 1978, 'Computation of the average precipitation over the western part of Peninsular India during the summer monsoon from the continuity equation for atmospheric water vapour', Tellus, 30, pp. 537-541.

