SOLAR, GEOMAGNETIC, IONOSPHERIC AND OZONE DATA

KODAIKANAL SOLAR, GEOMAGNETIC AND IONOSPHERIC DATA
(October—December 1959)

Curves showing (a) Kodaikanal daily relative sunspot numbers, (b) daily areas of calcium prominences and (c) daily areas of H-alpha dark markings are given on p. 195. Tables 1 to 4 below summarise the data on solar and geomagnetic phenomena. The hourly median values of critical frequency and virtual height for the ionospheric layers are given in Table 5.

TABLE 1
Prominent sunspot groups

<table>
<thead>
<tr>
<th>Kodaikanal serial No. of spotgroup</th>
<th>Mean latitude</th>
<th>Date of central meridian passage</th>
<th>Total area (millionths of the Sun’s visible hemisphere at central meridian passage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11688</td>
<td>19° S</td>
<td>Nov 11</td>
<td>925*</td>
</tr>
<tr>
<td>11699</td>
<td>15° N</td>
<td>Nov 26</td>
<td>519**</td>
</tr>
<tr>
<td>11705</td>
<td>5° N</td>
<td>Dec 1</td>
<td>1232†</td>
</tr>
<tr>
<td>11708</td>
<td>7° N</td>
<td>Dec 5</td>
<td>1008</td>
</tr>
<tr>
<td>11716</td>
<td>18° N</td>
<td>Dec 15</td>
<td>901</td>
</tr>
</tbody>
</table>

* Area as measured on 10 November 1959. ** It was larger in area before central meridian passage. † Area as measured on 3 December 1959.

TABLE 2
Solar Flares

<table>
<thead>
<tr>
<th>Date</th>
<th>Time in GMT</th>
<th>Co-ordinates</th>
<th>Importance</th>
<th>H-alpha line width</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beg.</td>
<td>Max.</td>
<td>End.</td>
<td>Mean latitude</td>
<td>Mean longitude</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>m</td>
<td>h</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>Oct 7</td>
<td>05</td>
<td>00*</td>
<td>—</td>
<td>05</td>
<td>10</td>
</tr>
<tr>
<td>Dec 4</td>
<td>08</td>
<td>45</td>
<td>08</td>
<td>55</td>
<td>09</td>
</tr>
</tbody>
</table>

* Time of commencement of observation and not beginning of flare
TABLE 3
Sudden disappearances of prominences and H-alpha dark markings

No sudden disappearance of prominences and H-alpha dark markings was observed

TABLE 4
Principal magnetic storms

<table>
<thead>
<tr>
<th>Greenwich date</th>
<th>Storm-time</th>
<th>Sudden commencement</th>
<th>C-figure degree of activity</th>
<th>Maximal activity</th>
<th>Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GMT of beginning</td>
<td>GMT of ending</td>
<td>Type</td>
<td>Amplitude</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h m d h</td>
<td></td>
<td>D H Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 3</td>
<td>07</td>
<td>22</td>
<td>4</td>
<td>14</td>
<td>...</td>
</tr>
<tr>
<td>Oct 5</td>
<td>12</td>
<td>11</td>
<td>6</td>
<td>22</td>
<td>...</td>
</tr>
<tr>
<td>Oct 29</td>
<td>23</td>
<td>49</td>
<td>31</td>
<td>23</td>
<td>s.c.</td>
</tr>
<tr>
<td>Nov 1</td>
<td>03</td>
<td>21</td>
<td>3</td>
<td>22</td>
<td>...</td>
</tr>
<tr>
<td>Nov 27</td>
<td>23</td>
<td>52</td>
<td>28</td>
<td>21</td>
<td>s.c.</td>
</tr>
<tr>
<td>Nov 30</td>
<td>05</td>
<td>31</td>
<td>Dec 1</td>
<td>19</td>
<td>...</td>
</tr>
<tr>
<td>Dec 5</td>
<td>06</td>
<td>57</td>
<td>7</td>
<td>05</td>
<td>s.c.</td>
</tr>
</tbody>
</table>

The following symbols and conventions have been used according to recognised practice—

1. Approximate time of ending of storm construed as the time of cessation of reasonably marked disturbance movements in the traces

2. s.c. = sudden commencement
... = gradual commencement

3. Signs of amplitudes of D and Z taken algebraically;
 (D — reckoned negative being westerly)
 (Z — reckoned positive being vertically downwards)

4. Storm described by three degrees of activity;
 m — for moderate (when range is less than 250γ)
 ms — for moderately severe (when range is between 251γ and 400γ)
 s — for severe (when range is above 400γ)
TABLE 5

Ionospheric data (Median values)

<table>
<thead>
<tr>
<th>Kodaikanal (10-2°N, 77-5°E)</th>
<th>November 1959</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time [h] F2 foF2 h'F h'F1 h'E foE foEs (M3000)</td>
<td>F2</td>
</tr>
<tr>
<td>(hrs)</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>11-5 240</td>
</tr>
<tr>
<td>01</td>
<td>10-6 240</td>
</tr>
<tr>
<td>02</td>
<td>9-3 220</td>
</tr>
<tr>
<td>03</td>
<td>7-7 230</td>
</tr>
<tr>
<td>04</td>
<td>6-4 220</td>
</tr>
<tr>
<td>05</td>
<td>5-5 220</td>
</tr>
<tr>
<td>06</td>
<td>7-4 260</td>
</tr>
<tr>
<td>07</td>
<td>10-7 240</td>
</tr>
<tr>
<td>08</td>
<td>12-3 240</td>
</tr>
<tr>
<td>09</td>
<td>12-7 220</td>
</tr>
<tr>
<td>10</td>
<td>12-0 205</td>
</tr>
<tr>
<td>11</td>
<td>11-6 205</td>
</tr>
<tr>
<td>12</td>
<td>11-7 205</td>
</tr>
<tr>
<td>13</td>
<td>11-8 210</td>
</tr>
<tr>
<td>14</td>
<td>12-3 215</td>
</tr>
<tr>
<td>15</td>
<td>12-4 220</td>
</tr>
<tr>
<td>16</td>
<td>12-3 240</td>
</tr>
<tr>
<td>17</td>
<td>12-4 270</td>
</tr>
<tr>
<td>18</td>
<td>11-6 340</td>
</tr>
<tr>
<td>19</td>
<td>10-3 385</td>
</tr>
<tr>
<td>20</td>
<td>10-2 355</td>
</tr>
<tr>
<td>21</td>
<td>11-1 300</td>
</tr>
<tr>
<td>22</td>
<td>11-6 260</td>
</tr>
<tr>
<td>23</td>
<td>11-8 240</td>
</tr>
</tbody>
</table>

Ionospheric data (Median values)

<table>
<thead>
<tr>
<th>Kodaikanal (10-2°N, 77-5°E)</th>
<th>October 1959</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time [h] F2 foF2 h'F h'F1 h'E foE foEs (M3000)</td>
<td>F2</td>
</tr>
<tr>
<td>(hrs)</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>11-7 240</td>
</tr>
<tr>
<td>01</td>
<td>11-1 230</td>
</tr>
<tr>
<td>02</td>
<td>9-9 230</td>
</tr>
<tr>
<td>03</td>
<td>8-1 240</td>
</tr>
<tr>
<td>04</td>
<td>6-8 240</td>
</tr>
<tr>
<td>05</td>
<td>5-9 240</td>
</tr>
<tr>
<td>06</td>
<td>7-8 260</td>
</tr>
<tr>
<td>07</td>
<td>11-0 240</td>
</tr>
<tr>
<td>08</td>
<td>12-7 230</td>
</tr>
<tr>
<td>09</td>
<td>13-0 220</td>
</tr>
<tr>
<td>10</td>
<td>12-0 210</td>
</tr>
<tr>
<td>11</td>
<td>11-7 205</td>
</tr>
<tr>
<td>12</td>
<td>11-8 210</td>
</tr>
<tr>
<td>13</td>
<td>12-2 215</td>
</tr>
<tr>
<td>14</td>
<td>12-6 220</td>
</tr>
<tr>
<td>15</td>
<td>12-9 225</td>
</tr>
<tr>
<td>16</td>
<td>13-1 245</td>
</tr>
<tr>
<td>17</td>
<td>12-8 270</td>
</tr>
<tr>
<td>18</td>
<td>11-5 340</td>
</tr>
<tr>
<td>19</td>
<td>U10-5 395</td>
</tr>
<tr>
<td>20</td>
<td>11-6 345</td>
</tr>
<tr>
<td>21</td>
<td>11-7 310</td>
</tr>
<tr>
<td>22</td>
<td>12-0 280</td>
</tr>
<tr>
<td>23</td>
<td>12-2 260</td>
</tr>
</tbody>
</table>

Kodaikanal Observatory, Kodaikanal
30 January 1960

A. K. DAS
Deputy Director General of Observatories

The symbols and terminology used are in accordance with the recommendations of the Special Committee on World-wide Ionospheric Soundings to U.R.S.I. A.G.I. in its first report (Brussels, 2 September 1956).
Fig. 1 (a). Kodaikanal daily relative sunspot numbers

Fig. 1 (b). Daily areas of calcium prominences

Fig. 1 (c). Daily areas of H-alpha dark markings

Note: Breaks in the graphs are due to lack of observations.
SOLAR GEOMAGNETIC IONOSPHERIC AND OZONE DATA

MAGNETIC OBSERVATORY, ALIBAG (BOMBAY)

Three-hourly indices of Geomagnetic Activity

(Scale values of variometers in γ/mm: D = -11.3; H = -4.4; Z = -2.5)

<table>
<thead>
<tr>
<th>Greenwich day</th>
<th>OCTOBER 1959</th>
<th>NOVEMBER 1959</th>
<th>DECEMBER 1959</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K-indices</td>
<td>Sum Character of the day*</td>
<td>K-indices</td>
</tr>
<tr>
<td>1</td>
<td>2335</td>
<td>2535</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>3333</td>
<td>1221</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>1333</td>
<td>4343</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>2344</td>
<td>5342</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>3325</td>
<td>4454</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>3434</td>
<td>4554</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>2225</td>
<td>3222</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>2222</td>
<td>2211</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>1222</td>
<td>1131</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>1211</td>
<td>2321</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>1111</td>
<td>1131</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>2111</td>
<td>2322</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>1222</td>
<td>1212</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>2324</td>
<td>3223</td>
<td>21</td>
</tr>
<tr>
<td>15</td>
<td>3325</td>
<td>2223</td>
<td>21</td>
</tr>
<tr>
<td>16</td>
<td>2221</td>
<td>1221</td>
<td>12</td>
</tr>
<tr>
<td>17</td>
<td>2333</td>
<td>3333</td>
<td>25</td>
</tr>
<tr>
<td>18</td>
<td>3345</td>
<td>4433</td>
<td>20</td>
</tr>
<tr>
<td>19</td>
<td>2222</td>
<td>1232</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>1323</td>
<td>2111</td>
<td>14</td>
</tr>
<tr>
<td>21</td>
<td>0222</td>
<td>2313</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>3334</td>
<td>3432</td>
<td>27</td>
</tr>
<tr>
<td>23</td>
<td>2234</td>
<td>2120</td>
<td>16</td>
</tr>
<tr>
<td>24</td>
<td>2132</td>
<td>3211</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>1333</td>
<td>3233</td>
<td>27</td>
</tr>
<tr>
<td>26</td>
<td>2343</td>
<td>5323</td>
<td>25</td>
</tr>
<tr>
<td>27</td>
<td>2342</td>
<td>2421</td>
<td>20</td>
</tr>
<tr>
<td>28</td>
<td>1222</td>
<td>2211</td>
<td>13</td>
</tr>
<tr>
<td>29</td>
<td>1222</td>
<td>2115</td>
<td>16</td>
</tr>
<tr>
<td>30</td>
<td>3343</td>
<td>4543</td>
<td>31</td>
</tr>
<tr>
<td>31</td>
<td>3345</td>
<td>3545</td>
<td>32</td>
</tr>
</tbody>
</table>

* At Bombay, since 1883, a day is classed as (1) a quiet day, or a day of (2) small, (3) moderate, (4) great or (5) very great disturbance, the letters distinguishing the respective classes being Cs, M, G and VG. For representing intermediate conditions of activity of the smaller period movements, sub-classifications, Ca, Sa, and Ma are used. Roughly speaking a storm having a range over 225γ in the variations of the horizontal intensity during the first twenty-four hours after its commencement is classed as "Very Great". It is "Great" if the range is between 150γ and 225γ, "Moderate" if the range is between 65γ and 150γ, "Small" if the range is less than 65γ. The range is however not the only criterion used in assigning the character of a storm. The oscillations in the magnetograms are duly taken into account in determining the character or class to which a particular storm should belong.

The corresponding international character figures can be determined from the following—

<table>
<thead>
<tr>
<th>Bombay Character</th>
<th>International Character</th>
<th>Bombay Character</th>
<th>International Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>M</td>
<td>2</td>
</tr>
<tr>
<td>Ca</td>
<td>0</td>
<td>Ma</td>
<td>2</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>G</td>
<td>2</td>
</tr>
<tr>
<td>Sa</td>
<td>1</td>
<td>VG</td>
<td>2</td>
</tr>
</tbody>
</table>

Colaba, Bombay
29 January 1960

P. R. PISHAROTY
Director, Colaba and Alibag Observatories
Solar Geomagnetic Ionospheric and Ozone Data

Daily Ozone Data—India

(From direct sun observations on 3112/3323 Å and 4536/3323 Å)

Assumed \(\alpha (3112) = 1.233 \) and \(\alpha' (3323) = 0.071 \)

New Delhi

(Lat. 28° 35'N, Long. 77°12'E)

<table>
<thead>
<tr>
<th>Date</th>
<th>October 1959</th>
<th></th>
<th>November 1959</th>
<th></th>
<th>December 1959</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours Ozone (IST) amount (cm-atmos)</td>
<td>State of sky</td>
<td>Hours Ozone (IST) amount (cm-atmos)</td>
<td>State of sky</td>
<td>Hours Ozone (IST) amount (cm-atmos)</td>
</tr>
<tr>
<td>1</td>
<td>09 0·259 (Sc, Cu)5, Ac 1</td>
<td>No observation</td>
<td></td>
<td></td>
<td>15 0·242 Clear</td>
</tr>
<tr>
<td>2</td>
<td>16 0·269 (Sc, Cu)3, (Ci, Cs) T</td>
<td></td>
<td></td>
<td>15 0·235 (Ci, Cs) 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16 0·254 (Sc, Cb) 2</td>
<td></td>
<td></td>
<td>16 0·233 Clear</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>09 0·247 Ac 1</td>
<td></td>
<td></td>
<td>15 0·235</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>No observation</td>
<td></td>
<td></td>
<td>14 0·213 (Ac, As) 6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>15 0·231 Clear</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>15 0·235</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>15 0·258</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>15 0·259 (Ci, Cs) 6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>14 0·275 Hazy</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>14 0·270 (Ci, Cs) 6</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>15 0·267 (Ci, Cs) 5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>15 0·257 Cu 2, Ci 3</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>14 0·261 (Sc, Cu) 3, Ac 1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>14 0·254 Ac 5, (Ci, Cs) 2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>15 0·263 Ac 1</td>
<td></td>
<td>14 0·263 (Sc, Cu) 3, Ac 1, (Sc, Cu) 3, Ci 1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>15 0·262 Clear</td>
<td>14 0·279 Ci 2, hazy</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>15 0·257</td>
<td>14 0·274 (Ci, Cs) 3</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>15 0·265</td>
<td>14 0·275 (Ci, Cs) 4</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>15 0·262</td>
<td>14 0·265 Clear</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>15 0·258 Ci 2</td>
<td>14 0·257</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>15 0·250 Clear</td>
<td>15 0·255</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>15 0·263 (Ci, Cs) 4</td>
<td>14 0·253</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>15 0·253 (Ci, Cs) 3</td>
<td>14 0·246</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>15 0·254 Hazy</td>
<td>15 0·246</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td>15 0·242</td>
<td>14 0·285</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td>15 0·250 Clear</td>
<td>15 0·287 (Ci, Cs) 4</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td>14 0·250 (St, Cu) 2, Ci T</td>
<td>16 0·290 (Ci, Cs) 3</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td>14 0·267 Clear</td>
<td>15 0·278 Very hazy</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>15 0·234 Clear</td>
<td>14 0·293 Clear</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>15 0·283</td>
<td></td>
</tr>
</tbody>
</table>

Note—The cloud amounts are in oktas.
DAILY OZONE DATA — INDIA

(From direct sun observations on 3112/3323 Å and 4536/3323 Å)

Assumed x (3112) = 1.233 and x′ (3323) = 0.071

MT. ABU

(Lat. 24° 36' N, Long. 72° 43' E)

<table>
<thead>
<tr>
<th>Date</th>
<th>OCTOBER 1959</th>
<th></th>
<th></th>
<th>NOVEMBER 1959</th>
<th></th>
<th></th>
<th>DECEMBER 1959</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours Ozone (IST) amount (cm-atmos)</td>
<td>State of sky</td>
<td>Hours Ozone (IST) amount (cm-atmos)</td>
<td>State of sky</td>
<td>Hours Ozone (IST) amount (cm-atmos)</td>
<td>State of sky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10 0·253 Ac 3</td>
<td>No observation</td>
<td>16 0·217 Clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>No observation</td>
<td>16 0·217</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15 0·241 Ac 2, Ci 2</td>
<td>Nearly overcast</td>
<td>15 0·223 Ci 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10 0·239</td>
<td>No observation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10 0·242 Ci 2</td>
<td>Overcast, raining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>16 0·237 Cu 2, Ci 2</td>
<td>Overcast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10 0·229 Clear</td>
<td>Clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10 0·237</td>
<td>No observation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>16 0·237 Ci 2</td>
<td>Overcast, raining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>16 0·239</td>
<td>No observation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>16 0·243 Cu 2, Ci 2</td>
<td>Overcast, raining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>16 0·237 Thin Ci all over the sky</td>
<td>Overcast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>16 0·239 Clear</td>
<td>Clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16 0·246</td>
<td>No observation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15 0·223 Clear</td>
<td>Clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>15 0·245</td>
<td>No observation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>16 0·245 Cu 2</td>
<td>Cu 3, Ci 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>16 0·242 Ac 2, Ci 2</td>
<td>Overcast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>16 0·242 Clear</td>
<td>Clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>16 0·245 Cu, Ci 2</td>
<td>No observation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>16 0·245 Cu 2</td>
<td>No observation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>16 0·241 Clear</td>
<td>Clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>10 0·239 Thin Ci</td>
<td>Clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>16 0·247 Clear</td>
<td>Clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>16 0·231</td>
<td>No observation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>16 0·231</td>
<td>No observation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>16 0·229 Cu 2</td>
<td>Overcast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>16 0·234 Clear</td>
<td>Clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>16 0·222 St. haze</td>
<td>Clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>16 0·221 Thin Ci</td>
<td>Clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>No observation</td>
<td>Clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note—The cloud amounts are in oktas.
SOLAR GEOMAGNETIC IONOSPHERIC AND OZONE DATA

DAILY OZONE DATA — INDIA
(From direct sun observations on 3112/3323 Å and 4536/3323 Å)
Assumed α (3112) = 1.23 and α' (3323) = 0.08

KODAIKANAL
(Lat. 10° 14' N, Long. 77° 28' E)

<table>
<thead>
<tr>
<th>Date</th>
<th>OCTOBER 1959</th>
<th>NOVEMBER 1959</th>
<th>DECEMBER 1959</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours Ozone (IST) amount (cm-atmos)</td>
<td>State of sky</td>
<td>Hours Ozone (IST) amount (cm-atmos)</td>
</tr>
<tr>
<td>1</td>
<td>No observation</td>
<td>Overcast</td>
<td>No observation</td>
</tr>
<tr>
<td>2</td>
<td>08 0.266</td>
<td>Cu 2, Ci 2</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>No observation</td>
<td>Overcast, rain</td>
<td>09 0.243</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td>Ac 2, As 3, Ci 2</td>
<td>No observation</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>Overcast, drizzle</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>08 0.258</td>
<td>Cs 2</td>
<td>Overcast, rain</td>
</tr>
<tr>
<td>7</td>
<td>08 0.257</td>
<td>Cu 1, Cs 1</td>
<td>Passing Sc, Ci 2</td>
</tr>
<tr>
<td>8</td>
<td>08 0.259</td>
<td>Sc 3, Cu 2, Ci 1</td>
<td>No observation</td>
</tr>
<tr>
<td>9</td>
<td>No observation</td>
<td>Cu 4, Sc 3</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>09 0.263</td>
<td>Sc 3, As 2</td>
<td>08 0.235</td>
</tr>
<tr>
<td>11</td>
<td>No observation</td>
<td>Overcast</td>
<td>No observation</td>
</tr>
<tr>
<td>12</td>
<td>08 0.253</td>
<td>Ac 1</td>
<td>08 0.243</td>
</tr>
<tr>
<td>13</td>
<td>08 0.253</td>
<td>Cu 2</td>
<td>No observation</td>
</tr>
<tr>
<td>14</td>
<td>08 0.254</td>
<td>Cu 2, Sc 1, Ci 1</td>
<td>07 0.233</td>
</tr>
<tr>
<td>15</td>
<td>07 0.245</td>
<td>Cu T, Ci 1</td>
<td>08 0.238</td>
</tr>
<tr>
<td>16</td>
<td>No observation</td>
<td>Overcast</td>
<td>09 0.243</td>
</tr>
<tr>
<td>17</td>
<td>"</td>
<td>"</td>
<td>09 0.239</td>
</tr>
<tr>
<td>18</td>
<td>"</td>
<td>"</td>
<td>09 0.243</td>
</tr>
<tr>
<td>19</td>
<td>"</td>
<td>"</td>
<td>08 0.234</td>
</tr>
<tr>
<td>20</td>
<td>"</td>
<td>Overcast, rain</td>
<td>09 0.238</td>
</tr>
<tr>
<td>21</td>
<td>"</td>
<td>"</td>
<td>10 0.231</td>
</tr>
<tr>
<td>22</td>
<td>"</td>
<td>Overcast, drizzle</td>
<td>"</td>
</tr>
<tr>
<td>23</td>
<td>"</td>
<td>"</td>
<td>08 0.226</td>
</tr>
<tr>
<td>24</td>
<td>"</td>
<td>Overcast</td>
<td>09 0.227</td>
</tr>
<tr>
<td>25</td>
<td>"</td>
<td>Overcast, drizzle</td>
<td>No observation</td>
</tr>
<tr>
<td>26</td>
<td>"</td>
<td>Overcast</td>
<td>09 0.234</td>
</tr>
<tr>
<td>27</td>
<td>Overcast, drizzle</td>
<td>"</td>
<td>No observation</td>
</tr>
<tr>
<td>28</td>
<td>Overcast, rain</td>
<td>"</td>
<td>Overcast, rain</td>
</tr>
<tr>
<td>29</td>
<td>Overcast</td>
<td>"</td>
<td>Overcast</td>
</tr>
<tr>
<td>30</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>31</td>
<td>Overcast, rain</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

Note — The cloud amounts are in oktas
SOLAR GEOMAGNETIC IONOSPHERIC AND OZONE DATA

DAILY OZONE DATA — INDIA

(From direct sun observations on 3112, 3323 Å and 4536/3323 Å)

Assumed x (3112) = 1.233 and x' (3323) = 0.071

SRINAGAR

(Lat. 34°05’ N, Long. 74°56’ E)

<table>
<thead>
<tr>
<th>Date</th>
<th>JANUARY 1959</th>
<th>FEBRUARY 1959</th>
<th>MARCH 1959</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours Ozone (IST) amount (cm-atmos)</td>
<td>State of sky</td>
<td>Hours Ozone (IST) amount (cm-atmos)</td>
</tr>
<tr>
<td>1</td>
<td>No observation</td>
<td>Rain or snow</td>
<td>No observation</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16 0.259 Cu 3, Ci 4</td>
<td></td>
<td>16 0.288 Cu 5, Ci 3</td>
</tr>
<tr>
<td>6</td>
<td>16 0.280 Cu 2, Ac 3</td>
<td></td>
<td>16 0.281 Almost overcast</td>
</tr>
<tr>
<td>7</td>
<td>No observation Overcast</td>
<td></td>
<td>16 0.276 Cu 2, very hazy</td>
</tr>
<tr>
<td>8</td>
<td>10 0.291 Nearly overcast</td>
<td></td>
<td>12 0.267 Cu 3, Ci 2</td>
</tr>
<tr>
<td>9</td>
<td>15 0.279 Cu 2, hazy</td>
<td></td>
<td>15 0.283</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>No observation Snowfall</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>No observation Overcast</td>
<td></td>
<td>12 0.319 Cu 3, Cs 5</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>14 0.319 Nearly overcast</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>14 0.319</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>16 0.330 Ac 3, Ci 2</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>16 0.275 Newly overcast</td>
</tr>
<tr>
<td>16</td>
<td>16 0.298 Newly overcast</td>
<td></td>
<td>16 0.282</td>
</tr>
<tr>
<td>17</td>
<td>No observation Heavy snowfall</td>
<td></td>
<td>16 0.305 Cu 3, Ci 2</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>No observation Overcast</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>16 0.294 Cu 3, Ci 2</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>No observation Almost overcast</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>16 0.305 Newly overcast</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>16 0.311 Cu 4, Ci 3</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>16 0.284 Cu 4, hazy</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>16 0.276 Cu 4, hazy</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>16 0.282 Cu 2, Ci 3</td>
<td>No observation</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>16 0.282 Cu 2, Ci 3</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>12 0.288 Newly overcast</td>
<td></td>
<td>16 0.270 Cu 3, Ci 2</td>
</tr>
<tr>
<td>28</td>
<td>No observation Snowfall</td>
<td></td>
<td>16 0.256 Hazy</td>
</tr>
<tr>
<td>29</td>
<td>16 0.314 Newly overcast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>15 0.299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>15 0.310 Cu 4, hazy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note—The cloud amounts are in oktas
Solar Geomagnetic Ionospheric and Ozone Data

Daily Ozone Data—India

(From direct sun observations on 3112/3232 Å and 4536/3323 Å)

Assumed α (3112) = 1.233 and α' (3323) = 0.071

Srinagar

(Lat. 34°05'N, Long. 74°50'E)

<table>
<thead>
<tr>
<th>Date</th>
<th>April 1959</th>
<th></th>
<th>May 1959</th>
<th></th>
<th>June 1959</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours Ozone (IST) amount (cm-atmos)</td>
<td>State of sky</td>
<td>Hours Ozone (IST) amount (cm-atmos)</td>
<td>State of sky</td>
<td>Hours Ozone (IST) amount (cm-atmos)</td>
<td>State of sky</td>
</tr>
<tr>
<td>1</td>
<td>17 0-286</td>
<td>Sl. haze</td>
<td>09 0-282</td>
<td>Nearly overcast</td>
<td>17 0-273</td>
<td>Hazy</td>
</tr>
<tr>
<td>2</td>
<td>08 0-270</td>
<td>Cu 2, haze</td>
<td>09 0-264</td>
<td></td>
<td>17 0-290</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11 0-272</td>
<td>Nearly overcast</td>
<td>09 0-262</td>
<td>Overcast</td>
<td>08 0-262</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>08 0-303</td>
<td>No observation</td>
<td>Rain, stormy weather</td>
<td>09 0-276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17 0-315</td>
<td>Cu 2, Ci 4, hazy</td>
<td></td>
<td></td>
<td>09 0-279</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>17 0-294</td>
<td>Cu 3, Ci 2</td>
<td>10 0-284</td>
<td>Overcast</td>
<td>17 0-260</td>
<td>Ac 2</td>
</tr>
<tr>
<td>7</td>
<td>17 0-286</td>
<td>Hazy</td>
<td>09 0-298</td>
<td></td>
<td>08 0-262</td>
<td>Sl. haze</td>
</tr>
<tr>
<td>8</td>
<td>16 0-267</td>
<td>Nearly overcast</td>
<td>No observation</td>
<td>Overcast, rain</td>
<td>16 0-266</td>
<td>Cu 2, Ci 3</td>
</tr>
<tr>
<td>9</td>
<td>16 0-262</td>
<td>Overcast</td>
<td>09 0-293</td>
<td>Nearly overcast</td>
<td>12 0-267</td>
<td>Hazy</td>
</tr>
<tr>
<td>10</td>
<td>10 0-276</td>
<td>Hazy, Cu 4</td>
<td>10 0-287</td>
<td>Thin Ci</td>
<td>18 0-273</td>
<td>Cu 2, Ci 2</td>
</tr>
<tr>
<td>11</td>
<td>08 0-274</td>
<td>Cu 2, hazy</td>
<td>No observation</td>
<td>Rain</td>
<td>10 0-267</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>08 0-290</td>
<td>Ac 2</td>
<td></td>
<td></td>
<td>08 0-282</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>08 0-295</td>
<td>Hazy</td>
<td>09 0-255</td>
<td>Hazy</td>
<td>12 0-271</td>
<td>Cu 3</td>
</tr>
<tr>
<td>14</td>
<td>17 0-295</td>
<td>13 0-269</td>
<td></td>
<td></td>
<td>16 0-277</td>
<td>Cu 2, Ci 3</td>
</tr>
<tr>
<td>15</td>
<td>17 0-293</td>
<td></td>
<td>09 0-285</td>
<td>Nearly overcast</td>
<td>17 0-269</td>
<td>Hazy</td>
</tr>
<tr>
<td>16</td>
<td>08 0-280</td>
<td>Cu 3, hazy</td>
<td>No observation</td>
<td>Rain</td>
<td>17 0-283</td>
<td>Cu 1, hazy</td>
</tr>
<tr>
<td>17</td>
<td>17 0-282</td>
<td>Cu 3, hazy</td>
<td></td>
<td></td>
<td>08 0-275</td>
<td>Nearly overcast</td>
</tr>
<tr>
<td>18</td>
<td>08 0-287</td>
<td>Hazy</td>
<td>09 0-284</td>
<td>Hazy</td>
<td>17 0-267</td>
<td>Cu 3, hazy</td>
</tr>
<tr>
<td>19</td>
<td>09 0-288</td>
<td>Clear</td>
<td>09 0-284</td>
<td>Clear</td>
<td>18 0-274</td>
<td>Ac 3, hazy</td>
</tr>
<tr>
<td>20</td>
<td>08 0-278</td>
<td>Nearly overcast</td>
<td>08 0-241</td>
<td></td>
<td>07 0-273</td>
<td>Hazy</td>
</tr>
<tr>
<td>21</td>
<td>09 0-297</td>
<td>Sl. rain, overcast</td>
<td>09 0-259</td>
<td></td>
<td>18 0-277</td>
<td>Ac 2, hazy</td>
</tr>
<tr>
<td>22</td>
<td>09 0-284</td>
<td>Rain, overcast</td>
<td>17 0-263</td>
<td></td>
<td>12 0-283</td>
<td>Hazy</td>
</tr>
<tr>
<td>23</td>
<td>10 0-305</td>
<td>Overcast</td>
<td>No observation</td>
<td></td>
<td>07 0-259</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>09 0-286</td>
<td>Nearly overcast, rain</td>
<td></td>
<td></td>
<td>13 0-270</td>
<td>Ac 2, hazy</td>
</tr>
<tr>
<td>25</td>
<td>09 0-275</td>
<td>Overcast</td>
<td></td>
<td></td>
<td>16 0-282</td>
<td>Hazy</td>
</tr>
<tr>
<td>26</td>
<td>08 0-278</td>
<td>Nearly overcast</td>
<td></td>
<td></td>
<td>18 0-275</td>
<td>Cu 3, hazy</td>
</tr>
<tr>
<td>27</td>
<td>09 0-278</td>
<td>Hazy, nearly overcast</td>
<td></td>
<td></td>
<td>16 0-274</td>
<td>Cu 2, hazy</td>
</tr>
<tr>
<td>28</td>
<td>09 0-286</td>
<td>Nearly overcast</td>
<td></td>
<td></td>
<td>16 0-273</td>
<td>Hazy</td>
</tr>
<tr>
<td>29</td>
<td>09 0-281</td>
<td></td>
<td></td>
<td></td>
<td>15 0-257</td>
<td>Thin Ci</td>
</tr>
<tr>
<td>30</td>
<td>No observation</td>
<td></td>
<td></td>
<td></td>
<td>15 0-264</td>
<td>Ci 4</td>
</tr>
<tr>
<td>31</td>
<td>17 0-269</td>
<td>Hazy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note—The cloud amounts are in oktas.