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सार — अध्ययन का अभिद्रश्यक िारत में पलार नदी बेभिन में ऐततहाभिक और िविष्य की िर्ाा का विश्लेर्ण  
करना है। िारत मौिम विज्ञान वििाग का 1901 – 2020 का ग्रिडयकु्त िर्ााका डेटा, और 2025 – 2099 के भलए िबिे 
उपयकु्त NEX-GDD डेटा का िालाना और मौिमी िमयमानपर विश्लेर्ण ककया गया। “टेलर डायिाम” और “एकिभिएंिी 
क्राइटेररया” का उपयोग करके परिॉमेंि क्राइटेररया के विश्लेर्ण िे पता चला कक MIROC ESM GCM िबिे 
उपयकु्तजलिाय ुमॉडल है जो अध्ययनक्षेत्र की जलिाय ुिंबधंी स्ततग्रिको दिााता है। मैन-कें डल परीक्षण िे ऐततहाभिक 
और मध्यम उत्िजानपररदृश्य के भलए िालाना िमयमानमें कािी बढ़तीप्रिवृि का पता चलता है। ऐततहाभिक िर्ाा और 
िमयपररितानिीलता के िाि बदलाि िविष्य के जलिायपुररदृश्य की तलुना में कम तपष्ट हैं। 120 िर्ों (1901-2020) 
में िर्ाा की भिन्नताका औित प्रमाण(प्रत्येक) ग्रिड बबदं ुपर 0.148 mm/िर्ा कम हो गई है। MIROC ESM GCM िे 
िविष्य के जलिायपु्रक्षेपण में दोनों उत्िजानपररदृश्य में िर्ाा का दर बड़ाहुआददखा। RCP 4.5 पररदृश्य में, िालाना िर्ाा 
में बढ़तीप्रिवृि ददख रही है और 21िीं िदी के आखखर तक, ििी ग्रिड बबदं ु पर औित िर्ाा में 75 mm की बढ़ोतरी 
देखी जाएगी। RCP 8.5 पररदृश्य में, िर्ाा के प्रक्षेपण में कोई प्रिवृिप्रततरूप नहीं ददखता है, लेककन यह 0.25 mm/िर्ा 
बढ़ जाता है। 21िीं िदी के पहले दिक में, अिल िर्ाा मध्यम उत्िजानपररदृश्य जिैी है, और दिूरे दिक में, प्रततरूप 
उच्चउत्िजानपररदृश्य जिैा है। आधारिूत अिग्रध (2000-2020) की तुलना में बेभिन में मध्यम उत्िजानपररदृश्य में 12% 
और हाई उत्िजानपररदृश्य में 7% िर्ाा बढे़गी। अध्ययनके नतीजों िे िमेककतजल ििंाधन प्रबधंनमें, चरम घटनाओ ंको 
कम करने में और ितत विकािमें िायदा होगा। 

 

ABSTRACT. The objective of the study is to analyse historical and future precipitation in the Palar River Basin, 

India. India Meteorological Department gridded precipitation data for 1901 – 2020, and the best-fitted NEX-GDDP data 

for 2025 – 2099 are analysed for annual and seasonal timescales. The analysis of the performance criteria using the 
Taylor diagram and the efficiency criteria revealed that MIROC ESM GCM is the most appropriate climate model that 

represents the climatic conditions of the study area. The Mann–Kendall's test reveals a significantly increasing trend in 

the annual time scale for historical and moderate emission scenarios. Historical precipitation and temporal variability are 
less pronounced compared to future climate scenarios. The average magnitude of rainfall variation over 120 years (1901-

2020) has reduced by 0.148 mm/year at each grid point. The future climate projection from MIROC ESM GCM showed 
an increased precipitation rate in both emission scenarios.  In the RCP 4.5 scenario, the annual rainfall shows an 

increasing trend and at the end of 21st century, 75 mm increase in average rainfall will be observed in all the grid points. 

In RCP 8.5 scenario, the precipitation projection shows no trend pattern, but it increases by 0.25 mm/year. In the first 
decade of the 21st century, actual precipitation resembles the moderate emission scenario, and in the second decade, the 

pattern resembles the high emission scenario. Relative to the baseline period (2000-2020) the basin would receive a 

precipitation increase of 12% in the moderate emission scenario and 7% in the high emission scenario. The study results 
would benefit integrated water resource management, mitigation of extreme events, and sustainable development.  

 

Key words  –  Rainfall variability, Mann-Kendall test, Sen slope, Taylors diagram, GCM. 
 

 

1. Introduction 

 

Hydrological system studies are seeking more 

attention due to the circulation of the bio-geocycle in the 

system (Fowler and Hennessy, 1995). Excessive 

precipitation and increased temperature in the basin affect 

extreme climate events such as floods and droughts 

(Jayanthi and Keesara, 2020). India's climate change is 

having a significant impact on water resources, 

agriculture, forestry, and health sectors (Majra and Gur, 

2009). Under climate change, developing countries like 

India are more vulnerable to urban floods and droughts 
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that cause significant economic losses (Jena and Azad, 

2021). Due to the increase in extreme precipitation events, 

the impacts of climate change due to flooding are severely 

affecting the Indian river basins in low-lying flood plains 

regions (Yadav et al., 2014). Due to improper land use 

management practices, groundwater recharge was 

reduced, affecting agricultural productivity. Several 

studies on climate variables and their future projections 

help to develop the adaptation strategies based on the 

impact (Ramachandran et al., 2019; Panda, 2019). The 

first step in determining the possible causes is to perform 

a trend analysis. Precipitation and temperature changes are 

the prominent meteorological drivers that can explain the 

occurrence of an increasing or decreasing trend in a 

hydrologic time series. This key driving parameter in the 

hydrological cycle affects regional and global climate 

change. Several statistical techniques have been used to 

detect significant trends in climate variables that include 

parametric and non-parametric tests. 

 

Many researchers have investigated the trends of 

precipitation and temperature all over the world. Studies 

have shown more robust rising temperature trends in 

recent years, but the precipitation has been more spatially 

heterogeneous across regions (Chinchorkar, et al., 2015; 

Bal et al., 2016; Buri et al., 2022). The precipitation trend 

analysis using the historic events of Kolli Hills, India, 

showed no significant trend in the annual precipitation of 

the study area but, at the same time a significant 

decreasing trend in the southwest monsoon, which was 

compensated by an increasing trend in the seasonal 

precipitation of the northeast monsoon (Remya, et al., 

2015). Annual and seasonal rainfall variability was 

highest in Western part of India's sub-divisions, while the 

lowest was found in Eastern and North India. Mann-

Kendall test on overall annual and seasonal rainfall 

reported that the sub-divisions of North-East, South and 

Eastern India showed a significant negative trend, while 

the other sub-divisions recorded a positive trend 

(Praveenkumar and Jothiprakash, 2020). Long-term 

analysis using the historic dataset in Ananthapuram, 

Andhra Pradesh, India, revealed that an increase in the 

summer rainfall trends and decreasing monsoon rainfall 

trends would impact the agriculture sector in the region 

(Patakamuri, et al., 2020). Mehta and Yadav (2021) 

analysed the rainfall variability and drought for 102 years 

from 1901 and 2002 over Barmer District of Rajasthan, 

India. Trend analysis of seasonal and extreme annual 

monthly rainfall depicted that increasing trend was 

observed in pre, post, southwest monsoon and annual 

rainfall and a decreasing trend in winter rainfall. 

 

Assessing historic and future trends in 

meteorological parameters at different spatial and 

temporal scales plays a crucial role in understanding 

climate change and its implications for food security, 

natural resource management, and sustainable 

development (Praveen and Ramachandran, 2015; Patel, et 

al., 2021). Therefore, continuous rainfall studies need to 

be emphasized for long-term water resource planning and 

management. Most of the studies related to spatio-

temporal analysis and trend analysis of climate variables 

were carried out at district or state or country level 

(Patakamuri, et al., 2020; Abhilash, et al., 2022; Subrat et 

al., 2023). Few studies of climate variables variability and 

trend analysis have been conducted at the basin scale 

using the historic data set (Praveenkumar and 

Jothiprakash, 2020; Supriya and Krishnaveni, 2018). 

Long–term basin-scale studies help address current and 

future climate change challenges.  

 

General Circulation Models (GCMs) are complex 

mathematical models that simulate physical processes 

occurring in the atmosphere, ocean, and land surface. 

These GCMs are utilised to predict the effects of climate 

change on hydrologic systems. Evaluating the reliability 

of individual GCM in simulating the historical climatic 

parameters to identify the ideal GCM models using 

various performance indicators. In order to evaluate the 

suitable model 24 CMIP5-GCMs for the Upper Narmada 

river basin in India, Pandey et al. (2019) employed the 

Skill Score, Root Mean Square Error, and Total Index (TI) 

indicators. MIROC5, CNRM-CM5, and MPI- ESM- LR 

were the best GCMs for the basin. Deepthi et al. (2020) 

examined the suitable GCMs for predicting future 

precipitation in the Upper Godavari sub-basin, India. 

Method for rating the GCM was based on performance 

indicators using Technique for Order Preference to the 

Similarity to Ideal Solution. The CNRM-CM5-2, CNRM-

CM5, and MPI-ESM-P GCMs were suitable for predicting 

precipitation in the sub-basin using a group decision-

making technique. Shaikh et al. (2022)   studied the 

climatic projections of Western India using global and 

regional climate model for the climate variables 

precipitation, temperature minimum and maximum in 

Hathmati River watershed. CMIP5 models, namely 

CCSM4 and CESM1- CAM5 is bias corrected for the 

observed data and CCSM4 is selected further for climate 

projection under RCP 4.5 scenario. All the climate 

variables such as precipitation, minimum and maximum 

temperature showed a significant increase in the mean 

value when compared to the baseline (1980 –2019). 

 

From the literature, it is observed that there is a wide 

range of single and multiple Performance Criteria 

Analysis (PCA) and decision making methods chosen for 

ranking of GCMs. In the river basins of India, future 

climate change impact studies need to be considered on a 

case to case basis. Previous research found that the 

competence of the climate model's performance was 
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region-specific, with significant variability in climatic 

pattern simulation (Raju and Kumar, 2020; Hassen et al., 

2020). Hence, choosing the most appropriate GCMs is 

suggested for the climate change impact studies of basins. 

The main objective of this paper is to examine variability 

and trends of precipitation for the historical period (1901-

2020) and the future period (2025 to 2099) using the best-

fitted high resolution climate model for the study area. 

 

2. Data and methodology 

 

2.1. Study area 

 

The Palar River is one of the major sources of water 

that replenish the groundwater in Vellore, Kanchipuram, 

and Thiruvanamalai from West to East. Palar is a seasonal 

river that contributes to the high urbanization area. The 

two-phase shift occurred before the active river path due 

to the intensified northeast monsoon, mild neotectonics 

activity, and rapid upstream avulsion (Resmi, et al., 2017). 

The availability of surface water in the Palar basin has 

decreased over the years (Venkatesan, et al., 2019). 

Groundwater has become the main source for irrigation 

and drinking water sectors (Krishnan and Saravanan, 

2022). The basin covers predominantly Archaean 

crystalline formations like gneisses and charnockites, and 

the remaining are alluvium deposits. The Eastern Ghats 

ranges of hills, the plateau region and the coastal plains 

are the three main topographical divisions of this basin. 

The pediment pediplain erosional landform with a very 

gently sloping (towards the bay of bengal) inclined 

bedrock surface is predominant. Along the river course, 

the active flood plain ranges up to 5 km. The occurrence 

of groundwater is a rare source in the hill and valley 

region of the upper part of the basin.  

 

The catchment area of the basin is 10228.35 Km2 

and lies between the geographic coordinates of Latitude 

12°39' N and 12°54' N & Longitude 78°32' E and 79°56' 

E. The basin receives an average annual rainfall of 

1065.14 mm. The average minimum and maximum 

temperatures are around 23.54 °C and 33.29 °C. The basin 

covers urban, peri-urban and rural areas. Rapid migration 

of the people into the peri-urban area leads to water 

scarcity and pollution. Extreme climatological events that 

trigger floods and droughts. It has subsequent impacts on 

land, and biodiversity. Basin stakeholders rely on the 

replenishment of the hydrological system by means of 

monsoon rainfall. The basin is at risk to drought and flood 

due to the radial increase of the built-up areas, population 

growth, and over - exploitation of groundwater (Senthil 

kumar and Elango, 2004; Kanagaraj et al., 2018; 

Saravanan et al., 2020). An attempt is made in this study 

by  reviewing  the  previous  studies  and  identifying   the 

research gap. The trend pattern of the  historic  and  future 

 
 

Fig. 1. Flowchart of methodology adopted in this study 

 

climate variables is mandatory due to scarce availability 

of the water resources in the basin to empower the 

understanding of the realistic problem. 

 

2.2. Methodology 

  

The detailed methodology implemented in this study 

is discussed in Fig. 1. Indian Meteorological Data (IMD) 

high resolution, gridded rainfall data at 0.25° × 0.25° 

resolution for the period of 1901–2020 is used in the study 

for historic rainfall analysis (Pai, et al., 2014). IMD daily 

grid rainfall was developed from more than 3,000 rain 

gauge network stations across India and the grid points are 

exported for the study area. The grid points locations and 

their elevations in the study area are shown in table 1.  

 

A statistically downscaled bias-corrected subset of 

climate scenarios derived from the GCM NASA Earth 

Exchange-Global Daily Downscaled Projections (NEX-

GDDP) dataset over India for two emission scenarios 

Representative Concentration Pathways (RCPs) 4.5 

(moderate emission) and 8.5 (high emission) is used for 

the future precipitation analysis (Thrasher, et al., 2012). 

Out of 21 bias-corrected high-resolution (0.25° × 0.25°) 

datasets, the best-fitted GCM is employed in the study to 

assess the future climate change impacts on systems from 

2025 - 2099. The position of the grid points and the 

elevation of the IMD data and 21 GCM located in the 

study area are extracted and presented in Table 1 & Fig. 2. 
 

2.2.1. Selection Of GCM 
 

The performance criteria of each GCM are              

analysed using Taylor's diagram & the six - efficiency 

criteria. The Taylor diagram is particularly useful for 

comparing model strengths & estimating a model's overall 
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Fig. 2. Location of study area and grid point 

 
TABLE 1  

 

Description of a grid point in the study area considered for analysis of historic IMD 

 

Grid 
Point 

IMD grid point locations – Historic period NEX-GDDP grid point locations – Future period 

Latitude Longitude 
Elevation 

(m) 

Annual Average 

 Rainfall (mm) 
Latitude Longitude 

Elevation 

(m) 

Annual Average 
Rainfall (mm) 

P1 79 12.5 209 1054.89 N1 12.625 78.625 1054.89 

P2 79.25 12.5 164 1082.50 N2 12.875 78.625 1082.50 

P3 79.5 12.5 104 1115.05 N3 12.375 78.875 1115.05 

P4 79.75 12.5 46 1163.84 N4 12.625 78.875 1163.84 

P5 80 12.5 18 1256.63 N5 12.875 78.875 1256.63 

P6 78.75 12.75 476 917.89 N6 12.375 79.125 917.89 

P7 79 12.75 651 1025.9 N7 12.625 79.125 1025.9 

P8 79.25 12.75 159 1047.3 N8 12.875 79.125 1047.3 

P9 79.5 12.75 116 1136.43 N9 12.625 79.375 1136.43 

P10 79.75 12.75 63 1186.02 N10 12.875 79.375 1186.02 

P11 80 12.75 45 1276.37 N11 12.625 79.625 1276.37 

P12 78.75 13 410 937.78 N12 12.875 79.625 937.78 

P13 79 13 292 997.11 N13 12.625 79.875 997.11 

P14 79.25 13 201 951.99 N14 12.875 79.875 951.99 

 

 

performance (Nash and Sutcliffe, 1970; Raju and Kumar, 

2020; Hassen et al., 2020). The ‘reference field’ is one 

that often represents an observed state, and another is the 

‘test field’ (typically a model-simulated field). The test 

field should be similar to the reference field to achieve the 

goal. The indices of the efficiency criteria Root Mean 

Square Error (𝑅𝑀𝑆𝐸), Nash Sutcliffe model Efficiency 

coefficient (𝑁𝑆𝐸), Pearson coefficient (𝑟), Mean Bias 

Error (𝑀𝐵𝐸), Mean Absolute Error (𝑀𝐴𝐸), and index of 

agreement (𝑑) are also calculated. The observed data are 

denoted as 𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 the model data as 𝑌𝑚𝑜𝑑𝑒𝑙  for i years 

(i = 1,2,3…, n), 𝑋 is the mean of the observed data, 𝑌 is 

the mean of the model data. 

 

The 𝑅𝑀𝑆𝐸 of average error is calculated by root 

mean square error between the actual and the predicted 

model values. 𝑅𝑀𝑆𝐸 is always non-negative, and the 

value of '0' indicates a perfect fit to the data. 

 

𝑅𝑀𝑆𝐸 =  √
∑𝑛

𝑖=1 (𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 −𝑌𝑚𝑜𝑑𝑒𝑙,𝑖 ) 2

𝑛
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NSE indicates the accuracy of the model and plots of 

the observed versus simulated data to fit in 1:1 line. The 

value of 𝑁𝑆𝐸 closer to '1' indicates the perfect agreement 

with the observed data and '0' indicates that the model has 

the exact prediction as the observed mean (Taylor, 2001). 

𝑁𝑆𝐸 is between −∞ and +1 for a perfect correlation 

between the observed and the model prediction data. 

 

𝑁𝑆𝐸 = 1 −  
∑ (𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 −𝑌𝑚𝑜𝑑𝑒𝑙,𝑖 )

2𝑛
𝑖=1

∑ (𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 −𝑋 )
2𝑛

𝑖=1

  

               

The '𝑟' is a measure of the strength of the linear 

relationship between the observed and predicted values. 

The value of 𝑟  = “1” indicates perfect association with the 

model prediction and “0” indicates no association. 

 

𝑟 =  [
∑ (𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 −𝑋 )(𝑌𝑚𝑜𝑑𝑒𝑙,𝑖 −𝑌 )

𝑛
𝑖=1

√∑ (𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 −𝑋 )
2𝑛

𝑖=1  √∑ (𝑌𝑚𝑜𝑑𝑒𝑙,𝑖 −𝑌 )
2𝑛

𝑖=1

] 

              

MBE captures the deviation in the prediction. A 

positive value indicates that the models overestimate the 

observed data and vice versa. 

 

𝑀𝐵𝐸 =
1

𝑛
  ∑ (𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖  − 𝑌𝑚𝑜𝑑𝑒𝑙,𝑖 )

𝑛
𝑖=1  

               

MBE is calculated between the observed and the 

predicted value; it can be positive or negative, so the 

absolute error must be calculated. MAE is the average of 

the absolute differences between the predicted and actual 

observation across the test samples. The lower value of 

𝑀𝐵𝐸 indicates the best performance of the model.  

 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 − 𝑌𝑚𝑜𝑑𝑒𝑙,𝑖 |

𝑛
𝑖=1   

              

The index of agreement (𝑑) is not a correlation 

measure. It is a measure of the extent to which a model's 

prediction is error-free. The ‘𝑑’ is calculated to vary 

between 0 and 1. The computed value of 1.0 indicates 

perfect agreement between the observed and predicted 

values, and 0.0 indicates complete discrepancies.  

 

𝑑 = 1 −
∑ (𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 −𝑌𝑚𝑜𝑑𝑒𝑙,𝑖 )

2𝑛
𝑖=1

∑ (|𝑌𝑚𝑜𝑑𝑒𝑙,𝑖− 𝑋|+ |𝑋𝑚𝑜𝑑𝑒𝑙,𝑖− 𝑋|)𝑛
𝑖=1

2  

              

The NEX-GDDP GCM for 21 CMIP5 climate 

models ranking is done using the entropy method. The 

analysis using the entropy method is based on the 

available data and its relationship with the performance 

indicators (Banda, et al., 2021). The entropy method 

measures the weight of each performance indicator 

separately and finds the difference between the records in 

the payoff matrix. Weights calculated by the entropy 

method are assigned to the performance indicators for 

ranking the models based on multi-criteria decision 

methods. The entropy of the matrix (𝐸𝑘) is given by the 

following equation: 
 

𝐸𝑘 =  
−1

𝑙𝑛 (𝑛) 
∑ 𝑝𝑖𝑘𝑙𝑛 (𝑝𝑖𝑘) 𝑛

𝑖=1           

 

where 𝑝𝑖𝑘 is the payoff matrix, 𝐸𝑘 is the entropy value for 

indicator ‘k’, and ‘n’ is the number of GCM. The degree 

of diversification (𝐷𝑘) represents the value provided by 

the result of the performance indicator ‘k’ and is 

expressed as follows: 
 

𝐷𝑘 =  1 − 𝐸𝑘     

            

Normalized weights(𝑤𝑘)  of the performance 

indicators obtained by the entropy method are given 

below: 

 

𝑤𝑘 =
𝐷𝑘

∑ 𝐷𝑘
𝑛
𝑘=1

              

       

The NEX- GDDP GCM data set of 21 GCM for the 

historic and future scenarios is exported to the study 

region which covers all grid points. The historic climate 

variable dataset of the climate models from 1950 to 2005, 

are compared with the observed climate variables for 

monthly and annual time scale. The efficiency criteria of 

each model are estimated using the observed data. The 

Taylor’s diagram is also plotted to identify the best fit 

model. The Multi criteria decision making entropy 

ranking method is used to rank the model and to identify 

the best fit model for the study basin for prediction of 

future precipitation scenarios.   

                    

2.2.2. Trend analysis method 

 

Parametric and non-parametric approaches identify 

significant trends in time series analysis. The time-series 

data should be homogenous and independent. Non-

parametric trend tests primarily assume that the data are 

independent and do not assume statistical distribution. In 

this study, the trend pattern of precipitation is determined 

using two non-parametric approaches, Mann-Kendall and 

Sen’s slope estimator. 

 

2.2.3. Modified mann-kendal test  

 

Mann–Kendall (MK) trend test is a non-parametric 

method most commonly used to investigate trends in 

hydro-meteorological, climate and environmental data 

(Mann, 1945; Chinchorkar, et al., 2015). Although the 

classic MK test is used to identify trends in time series, it 

may not be appropriate when the serial correlation in the 

data is too high. In this study, a modified MK test 

proposed by Yue and Wang (2004) was implemented, in 

which the influence of serial correlation on the MK test 

https://link.springer.com/article/10.1007/s11069-022-05243-9#ref-CR115
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was investigated by Monte-Carlo simulation. The serially 

correlated data are first detrended and the effective sample 

size is calculated using significant serial correlation 

coefficients.  

 

 2.2.4. Sen slope estimator 

 

Sen (1968) developed the non-parametric technique 

for estimating the trend slope. For the given time series x 

with n observations in the sample of N data pairs:  

 

𝑆 =  
𝑥𝑘−𝑥𝑗

𝑘−𝑗
, 𝑘 ≠ 𝑗    

               

where 𝑥𝑗 and 𝑥𝑘 are the values at times j and k (j>k), 

respectively.  

 

According to the Sen’s method, the overall estimator 

of the slope is the median of these N values of S. The 

overall Sen slope estimator S* is as follows: 

 

𝑆∗ = 𝑆(𝑁+1)

2

 , 𝑁 𝑖𝑠 𝑜𝑑𝑑; 

𝑆𝑁

2

+ 𝑆(𝑁+2)

2

2
, 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛  

 

3. Results and discussion 

 

3.1. Selection of GCM 

 

The results of the selection of GCM are determined 

using the Taylor’s plot and the PCA. The performance of 

the historic data (1950-2005) of 21 GCM climate models 

is evaluated using the Taylor diagram (Fig. 3). The 

precipitation correlation of all 21 GCM’s ranges from 0.4 

to 0.6, and the RMS varies from 85 mm/day to 120 

mm/day. The historic precipitation of GCM ‘MIROC 

ESM’ and ‘MIROC ESM CHEM’ has a good correlation 

of 0.6 and RMS difference of 85 mm/day.   

 

The PCA is performed using 6 efficiency criteria for 

the annual and monthly dataset for the 21 GCM’s. The 

objective weights are assigned to the 6 criteria using the 

entropy multi criteria decision making method, and the 

model is ranked. The objective weights assigned for the 

performance criteria are: NSE - 0.272, MBE – 0.153, d – 

0.074, RMSE – 0.077, MAE – 0.034, r – 0.390. In the 

monthly and annual analysis, MIROC ESM was ranked 

‘1’ as shown in Fig. 4. Although the index of agreement of 

MIROC ESM CHEM, monthly precipitation analysis is 

greater than that of MIROC ESM, the other analysis has 

placed the efficiency criteria that has put forward MIROC 

ESM to rank ‘1’. In the annual analysis of precipitation 

GCM data, MIROC ESM performed as a good model in 

all criteria. The analysis of the Taylor’s diagram and the 

performance of the efficiency criteria exposed that 

MIROC ESM was a good performance  model.  Hassen  et  

 

 
 

  Figs. 3(a&b). Taylor diagram of the GCMs projections a) ACCESS 
1.0 to GFDL ESM2G b) INMCM4 to NORESM_1 

 
al. (2020) examined the selection of CMIP5 GCM 

ensemble of the four top-ranked GCMs, namely 

ACCESS1.3, MIROC-ESM, MIROC-ESM-CHM, and 

NorESM1-M for the projection of spatio-temporal 

changes of precipitation and temperature in the Niger 

Delta, Nigeria. MIROC5, CNRM-CM5 and MPI-ESM-LR 

were found to be the best performing climate models out 

of 24 CMIP5 GCM in Upper Narmada Basin (Pandey et 

al., 2019). The selected representative GCM MIROC 

ESM was the one of the top representative models that 

represent the Indian climatic conditions reported by 

researchers and could be used to simulate the study area in 

the future climate change impact studies.
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Fig. 4. Ranking of NEX-GDDP GCM for annual and monthly precipitation 

 

 
 

Fig. 5. Annual average future rainfall projections from MIROC ESM GCM 

 
TABLE 2  

 

MK test analysis and magnitude for the historical precipitation 

 

Station No Annual JF MAM JJAS OND Sen slope mm/year 

P1 No Trend ↓Trend Detected ↓Trend Detected No Trend No Trend 0.036 

P2 No Trend ↓Trend Detected No Trend No Trend No Trend -0.017 

P3 No Trend ↓Trend Detected No Trend No Trend No Trend -0.599 

P4 No Trend ↓Trend Detected No Trend ↓Trend Detected No Trend -1.798 

P5 No Trend ↓Trend Detected No Trend No Trend No Trend -0.426 

P6 ↑Trend Detected ↓Trend Detected No Trend ↑Trend Detected No Trend 0.880 

P7 No Trend ↓Trend Detected No Trend No Trend No Trend -0.134 

P8 No Trend ↓Trend Detected No Trend No Trend No Trend 0.517 

P9 No Trend ↓Trend Detected No Trend No Trend No Trend 0.768 

P10 No Trend ↓Trend Detected No Trend No Trend No Trend -0.734 

P11 No Trend ↓Trend Detected No Trend No Trend No Trend -0.407 

P12 No Trend ↓Trend Detected ↓Trend Detected No Trend ↑Trend Detected 0.121 

P13 No Trend ↓Trend Detected No Trend No Trend No Trend 0.042 

P14 No Trend ↓Trend Detected No Trend ↓Trend Detected No Trend -0.327 
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TABLE 3 

 

 Change in precipitation of the study area with reference annual average of the base period (2001-2020) 

 

Period RCP 4.5 RCP 8.5 

Near Future (2025-2050) ↑10% ↑11% 

Far Future (2051-2099) ↑14% ↑3% 

 

 

TABLE 4 

 

 Sen slope estimator test for the future GCM precipitation 

 

Grid point 

RCP 4.5  RCP 8.5 

Annual JF MAM JJAS OND Annual JF MAM JJAS OND 

(mm/year) (mm/season) (mm/year) (mm/season) 

N1 0.7436 0.000 0.134 1.680 0.744 0.153 0.000 0.122 0.458 -0.455 

N2 0.8206 0.000 0.175 1.760 0.821 0.333 0.000 0.150 0.488 -0.355 

N3 0.9404 0.003 0.199 1.555 0.940 -0.140 0.004 0.081 0.304 -0.494 

N4 0.9656 0.000 0.159 1.575 0.966 0.109 0.002 0.105 0.516 -0.450 

N5 1.0168 0.000 0.174 1.668 1.017 0.346 0.001 0.132 0.517 -0.391 

N6 1.0558 -0.011 0.242 1.754 1.056 0.132 0.000 0.036 0.653 -0.481 

N7 1.0435 -0.008 0.225 1.861 1.044 0.354 0.000 0.045 0.901 -0.443 

N8 1.1185 -0.005 0.223 1.835 1.119 0.316 0.000 0.055 0.920 -0.331 

N9 1.2652 -0.013 0.219 1.727 1.265 0.472 0.002 0.039 0.871 -0.451 

N10 1.3018 -0.011 0.211 1.739 1.302 0.370 0.001 0.051 0.877 -0.396 

N11 1.4497 -0.013 0.177 1.568 1.450 0.535 0.005 0.038 0.898 -0.392 

N12 1.5049 -0.015 0.182 1.601 1.505 0.369 0.002 0.045 0.838 -0.376 

N13 1.5681 -0.017 0.168 1.462 1.568 0.632 0.008 0.029 0.834 -0.361 

N14 1.6811 -0.015 0.181 1.469 1.681 0.480 0.005 0.026 0.823 -0.353 

 

 

 

3.2. Trend analysis 

 

The MK statistical test has been widely used to 

quantify the significance of trends in hydro-

meteorological time series.  

 

3.2.1. Trend and magnitude analysis of historic 

period 

 

The MK test trend analysis and magnitude of historic 

precipitation from 1901 to 2020 for annual and seasonal is 

presented in Table 2. The trend analysis showed 

increasing and decreasing trends in annual precipitation 

and seasonal series. At grid point P6 an increasing annual 

rainfall trend is observed of 95% confidence interval (0.88 

mm/year). Rainfall in the southwest monsoon months is 

1.009 mm/year at station P6. Other grid points in the 

historic annual precipitation series show no trend pattern 

over 120 years (1901-2020). Grid-point location P4 

showed an irregular decrease in precipitation (1.798 mm 

/year) than the other grid points. Grid points P2, P3 of 

Tiruvannamalai district; P4, P5, P10, P11 of Kanchipuram 

district; and P7, P14 of Vellore district show decreasing 

annual precipitation. Grid points P1, P8, P9 of 

Tiruvannamalai district; P6, P12, and P13 of Vellore 

district show increasing annual precipitation. The 

precipitation variation of the study area over 120 years 

decreased by 0.148 mm/year. The JJAS months showed 

an increasing trend pattern of 0.048 mm/year from 1901 to 

2020. In other seasons JF, MAM, and OND showed a 

decreasing magnitude of 0.127 mm/ season,                          

0.063 mm/season, and 0.099 mm/season. In the historical 

period, the monsoonal forward shift and shortening of the 

monsoon season happened due to climate change. 

However, the same trend pattern was observed in the 

Kanchipuram and Vellore district from the previous 

studies. Dhanya et al. (2015) studied the climate 

variability in Kanchipuram district for the period of 1970-

2000 generally showed a decreasing trend pattern in non-

parametric tests. Rainfall distribution in the southwest
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Fig. 6. Future Monthly annual average rainfall projections from MIROC ESM GCM 

 

 
Figs. 7(a & b). MK Trend of future annual rainfall projections a) RCP 4.5 b) RCP 8.5 

 
 

monsoon season has decreased compared to the northeast 

monsoon season. The precipitation data for the period of 

10 years from 2008 to 2017 for all the 5 rain gauge 

stations in Vellore district was analysed by Venkatesan et 

al. (2021). The study concluded that moderate annual 

precipitation was received when compared with the 

average annual precipitation of Tamil Nadu (920 mm). 

Pavithrapriya et al. (2022) observed that rainfall showed 

an insignificant decreasing trend in Adirampattinam and 

Nagapattinam meteorological stations and an increasing 

trend in the IMD grid points in Thanjavur Delta region of 

Tamil Nadu for the period of 1970 to 2014. Subrat et al., 

(2023) demonstrated a general decline in yearly monsoon 

precipitation across most regions in the states Karnataka, 

Gujarat, Rajasthan, and Maharashtra. Amit et al. (2023) 

observed the maximum average annual rainfall reduced 

from 1,769 to 1,401 mm after 1998 affecting water 

availability in Madhya Pradesh, India. The study 

highlighted a significant shift in Madhya Pradesh’s 

seasonal rainfall distribution after 1998. 

3.2.2. Trend and Magnitude Analysis of future 

period 

 

The linear trend of the annual average precipitation 

of the study area for the future period from 2006 to                  

2099 is shown in Fig. 5 for moderate and high                

emission scenarios. The moderate emissions                    

scenario shows an increasing trend, after 2040 the              

rainfall will be above the historic annual average.                 

More than 1600 mm of precipitation can be expected                 

in the periods 2023, 2050, 2088, and 2099, which is               

50% more than the annual average under scenario                    

RCP 4.5. The years 2029, 2059, 2091, and 2098                    

may be expected to have more than 1400 mm of              

rainfall, 30% more than the annual average of the    

scenario RCP 8.5.  

 

The monthly average of historical and future 

precipitation is portrayed in Fig. 6. Rainfall is observed to 

increase in the months of August, September, and 
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Figs. 8(a-d). MK Trend of future seasonal rainfall projections of RCP 4.5 a) JF b) MAM c) JJAS d) OND 

 

 
 

Figs. 9(a-d). MK Trend of future seasonal rainfall projections of RCP 8.5 a) JF b) MAM c) JJAS d) OND 
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Figs. 10(a-d). Spatial variation of annual precipitation in near future period and far future period for RCP 4.5 and RCP 8.5 Scenario 

 

 

October when compared with the baseline period (1901-

2020) for both scenarios. It is also noted that there is an 

increase in the amount of precipitation in southwest 

monsoon (JJAS) compared with the northeast monsoon 

(OND). There is a slow shift in the paradigm of 

monsoonal forward shift and monsoon period reduction 

has happened due to climate change. Geetha and Raj 

(2015) also synchronised with the findings observed with 

the historical precipitation major shift that withdrawal of 

northeast monsoon from north coastal Tamilnadu occurs 

about 2 weeks prior to the withdrawal from the central and 

southern parts of coastal areas in Tamilnadu.  

   

Trend analysis is performed for the future MIROC 

ESM GCM precipitation dataset from 2025 to 2099 in 

annual and seasonal time scales shown in Figs. 7, 8 and 9. 

The change in precipitation variation for the near and far 

future period with respect to actual rainfall observed in the 

basin from 2000 to 2020 is presented in Table 3. The 

average annual precipitation of the near future period for 

the moderate and high emission scenarios are 1129.02 mm 

and 1148.84 mm. For the moderate and high emission 

scenarios, the average annual precipitation for the far 

future period is 1176.14 mm and 1065.15 mm, 

respectively.  The moderate emissions scenario shows an 

increasing trend pattern in the annual and monsoon 

months (JJAS and OND). The high emission scenarios do 

not show a significant trend pattern in the annual and 

seasonal analysis. The Sen slope estimation analysis 

shown in Table 4 describes the magnitude of the trend 

variation for the future period. The southwest monsoon 

month (JJAS) will receive an increase in precipitation of 

1.462 to 1.861 mm/season above normal rainfall in the 

moderate emission scenario and 0.304 to 0.920 

mm/season of rainfall in the high emission scenario. The 

northeast monsoon month (OND) will receive an increase 

of 0.744 to 1.681 mm/season above normal rainfall in 

moderate emission. However, the high emission scenario 

in OCD shows a decreasing magnitude of 0.331 to 0.494 

mm/season. The summer rainfall (MAM) has increased by 

0.2 mm/season but does not follow any trend pattern in 

moderate emission. The JF seasonal does not show any 

significant trend in the future period.  

 

The spatial variation in annual precipitation in the 

near future (2025-2050) and far future period (2051-2099) 

is shown in figure 10. In both scenarios of the near future, 

the magnitude of precipitation variation resembles the 

same. The upper reach of the basin receives less 

precipitation in the moderate emission scenario than the 
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average annual rainfall of about ~ 5 mm/year where 

groundwater was extinct. The moderate emission scenario 

shows the increased amount of rainfall of about 1.69 – 

3.09 mm/year in the far future period of the annual 

precipitation. The high emission scenario shows the 

increased amount of rainfall of about 0.92 – 3.16 mm/year 

in the far future period of the annual precipitation. The 

middle and lower reach of the basin receives high rainfall 

during the monsoonal season, where urbanization 

clustering has increased in recent years. Future summer 

rainfall magnitude is increased compared to the historical 

period due to coastal upwelling. The annual rainfall 

projections of the RCP4.5 scenario in near future and far 

future period with the range of 680 - 1670 mm/year and 

876 - 1649 mm/year. Annual rainfall forecasts for the 

RCP8.5 scenario in the near and far future range from 926 

- 1558 mm/year to 685-1664 mm/year.  Dhanya et al. 

(2013) observed the projected climate variability of 

Kanchipuram district using the A1B scenario using the 

PRECIS Regional Climate Model. The rainfall projections 

showed decreasing trends for annual mean rainfall with a 

range of 700 - 1200 mm for the entire district during the 

period 2040 - 2070 with reference to the baseline period 

(1970 - 2000). The western part of the district shows the 

rainfall distribution of 700 - 900 mm/year and 750 - 950 

mm/year for the period 2040 - 2070 and 2070 - 2100.The 

eastern and the coastal part of the district shows the      

950-1200 mm/year and 1000 - 1250 mm/year for the same 

projection period. Pavithrapriya et al. (2022) remarked 

that an insignificantly decreasing trend of rainfall over the 

period 2015 - 2050 in Thanjavur Delta region of Tamil 

Nadu under RCP 4.5 emission scenario of MPI_ESM_LR 

CMIP5 model. Shaikh et al. (2022) showed an increase in 

precipitation to 1015.54 mm from 936.91 mm in 2050s 

projections. The average precipitation is increased around 

8.45% with respect to the base line period of 1980 to 2019 

using RCP4.5 projections of CCSM4 GCM simulations. 

Pandey (2023) used RegCM4-4CCCma-CanESM2 model 

in Gujarat, India to simulate the annual rainfall. It was 

found to increase during the projected period of 2020-

2099 at the rate of 11.6 mm/decade under RCP 4.5 and 

36.7 mm/decade under RCP 8.5. 

 

4. Conclusions 

 

Precipitation is a meteorological element that is 

highly variable in space and time. A key strength of the 

research is that precipitation analyses are performed for 

the historical and future basin level datasets. The 

significant findings of the study are that historic temporal 

variability and magnitude of precipitation change is less 

compared with future scenarios. Annual precipitation for 

the 120 years (1901-2020) shows no trend pattern, but the 

JF months show a decreasing trend pattern over the 

historical period indicating the forward shift of the 

monsoonal months. PCA according to Taylor’s diagram 

and efficiency criteria has revealed that MIROC ESM is a 

good performer model out of 21 NEX-GDDP GCM, that 

simulates the study basin climatology. MIROC-ESM was 

used to study the future climate change impact and predict 

future climate change scenarios in the Palar basin. The 

first half from 2006 to 2099 receives less annual rainfall 

than the second half in the moderate emission scenario 

and vice versa in the high emission scenario. The annual 

and monsoon months show an increasing trend of 1 

mm/year in the entire basin at each grid point in the 

moderate emission scenario. The precipitation projection 

of the high emission scenario does not show a trend 

pattern but an increased variability of 0.5 mm/year at each 

grid point will be observed. In the first decade of the 21st 

century, the rainfall in the study area resembles the RCP 

4.5 scenario, and the second-decade pattern resembles the 

RCP 8.5. Average precipitation may increase by 1030.40 

+ 98.58 mm in the near future period and 1030.40 + 

145.68 mm in the far future period in the RCP 4.5 

scenario. The condition of high emission scenario would 

increase the precipitation by 1030.40 + 118.42 mm in the 

near future period and 1030.40 + 34.7 mm in the far future 

period with reference to the annual average rainfall 

received in the study area during 2000-2020. 

 

The basin with the topography of ghats, plateau, and 

coastal region with increased precipitation and urban 

sprawl can directly result in significant hazards like rapid 

runoff, urban flooding, and flood discharge. The extreme 

flood and drought events of recent years are omens for the 

future. In a focused view of the future precipitation 

variability with reference to historic period events the 

water managers can rejuvenate the basin's water holding 

capacity. The rainfall-runoff and groundwater recharge 

rate projection studies in the basin would be future 

challenges that would help water resource managers to 

implement the policy. The precipitation analysis studies of 

a historical and future scenario provide insights into 

distinguishing vulnerable zones within the Palar basin that 

would help the stakeholders in preliminary planning and 

decision-making for integrated water resources 

management.  
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