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ABSTRACT. The objective of the study is to analyse historical and future precipitation in the Palar River Basin,
India. India Meteorological Department gridded precipitation data for 1901 — 2020, and the best-fitted NEX-GDDP data
for 2025 — 2099 are analysed for annual and seasonal timescales. The analysis of the performance criteria using the
Taylor diagram and the efficiency criteria revealed that MIROC ESM GCM is the most appropriate climate model that
represents the climatic conditions of the study area. The Mann—Kendall's test reveals a significantly increasing trend in
the annual time scale for historical and moderate emission scenarios. Historical precipitation and temporal variability are
less pronounced compared to future climate scenarios. The average magnitude of rainfall variation over 120 years (1901-
2020) has reduced by 0.148 mm/year at each grid point. The future climate projection from MIROC ESM GCM showed
an increased precipitation rate in both emission scenarios. In the RCP 4.5 scenario, the annual rainfall shows an
increasing trend and at the end of 21st century, 75 mm increase in average rainfall will be observed in all the grid points.
In RCP 8.5 scenario, the precipitation projection shows no trend pattern, but it increases by 0.25 mm/year. In the first
decade of the 21st century, actual precipitation resembles the moderate emission scenario, and in the second decade, the
pattern resembles the high emission scenario. Relative to the baseline period (2000-2020) the basin would receive a
precipitation increase of 12% in the moderate emission scenario and 7% in the high emission scenario. The study results
would benefit integrated water resource management, mitigation of extreme events, and sustainable development.

Key words — Rainfall variability, Mann-Kendall test, Sen slope, Taylors diagram, GCM.

extreme climate events such as floods and droughts

Hydrological system studies are seeking more
attention due to the circulation of the bio-geocycle in the
system (Fowler and Hennessy, 1995). Excessive
precipitation and increased temperature in the basin affect

(Jayanthi and Keesara, 2020). India's climate change is
having a significant impact on water resources,
agriculture, forestry, and health sectors (Majra and Gur,
2009). Under climate change, developing countries like
India are more vulnerable to urban floods and droughts
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that cause significant economic losses (Jena and Azad,
2021). Due to the increase in extreme precipitation events,
the impacts of climate change due to flooding are severely
affecting the Indian river basins in low-lying flood plains
regions (Yadav et al., 2014). Due to improper land use
management practices, groundwater recharge was
reduced, affecting agricultural productivity. Several
studies on climate variables and their future projections
help to develop the adaptation strategies based on the
impact (Ramachandran et al., 2019; Panda, 2019). The
first step in determining the possible causes is to perform
a trend analysis. Precipitation and temperature changes are
the prominent meteorological drivers that can explain the
occurrence of an increasing or decreasing trend in a
hydrologic time series. This key driving parameter in the
hydrological cycle affects regional and global climate
change. Several statistical techniques have been used to
detect significant trends in climate variables that include
parametric and non-parametric tests.

Many researchers have investigated the trends of
precipitation and temperature all over the world. Studies
have shown more robust rising temperature trends in
recent years, but the precipitation has been more spatially
heterogeneous across regions (Chinchorkar, et al., 2015;
Bal et al., 2016; Buri et al., 2022). The precipitation trend
analysis using the historic events of Kolli Hills, India,
showed no significant trend in the annual precipitation of
the study area but, at the same time a significant
decreasing trend in the southwest monsoon, which was
compensated by an increasing trend in the seasonal
precipitation of the northeast monsoon (Remya, et al.,
2015). Annual and seasonal rainfall variability was
highest in Western part of India's sub-divisions, while the
lowest was found in Eastern and North India. Mann-
Kendall test on overall annual and seasonal rainfall
reported that the sub-divisions of North-East, South and
Eastern India showed a significant negative trend, while
the other sub-divisions recorded a positive trend
(Praveenkumar and Jothiprakash, 2020). Long-term
analysis using the historic dataset in Ananthapuram,
Andhra Pradesh, India, revealed that an increase in the
summer rainfall trends and decreasing monsoon rainfall
trends would impact the agriculture sector in the region
(Patakamuri, et al., 2020). Mehta and Yadav (2021)
analysed the rainfall variability and drought for 102 years
from 1901 and 2002 over Barmer District of Rajasthan,
India. Trend analysis of seasonal and extreme annual
monthly rainfall depicted that increasing trend was
observed in pre, post, southwest monsoon and annual
rainfall and a decreasing trend in winter rainfall.

Assessing  historic and  future trends in
meteorological parameters at different spatial and
temporal scales plays a crucial role in understanding

climate change and its implications for food security,
natural  resource  management, and  sustainable
development (Praveen and Ramachandran, 2015; Patel, et
al., 2021). Therefore, continuous rainfall studies need to
be emphasized for long-term water resource planning and
management. Most of the studies related to spatio-
temporal analysis and trend analysis of climate variables
were carried out at district or state or country level
(Patakamuri, et al., 2020; Abhilash, et al., 2022; Subrat et
al., 2023). Few studies of climate variables variability and
trend analysis have been conducted at the basin scale
using the historic data set (Praveenkumar and
Jothiprakash, 2020; Supriya and Krishnaveni, 2018).
Long-term basin-scale studies help address current and
future climate change challenges.

General Circulation Models (GCMs) are complex
mathematical models that simulate physical processes
occurring in the atmosphere, ocean, and land surface.
These GCMs are utilised to predict the effects of climate
change on hydrologic systems. Evaluating the reliability
of individual GCM in simulating the historical climatic
parameters to identify the ideal GCM models using
various performance indicators. In order to evaluate the
suitable model 24 CMIP5-GCMs for the Upper Narmada
river basin in India, Pandey et al. (2019) employed the
Skill Score, Root Mean Square Error, and Total Index (T1)
indicators. MIROC5, CNRM-CM5, and MPI- ESM- LR
were the best GCMs for the basin. Deepthi et al. (2020)
examined the suitable GCMs for predicting future
precipitation in the Upper Godavari sub-basin, India.
Method for rating the GCM was based on performance
indicators using Technique for Order Preference to the
Similarity to Ideal Solution. The CNRM-CM5-2, CNRM-
CMB5, and MPI-ESM-P GCMs were suitable for predicting
precipitation in the sub-basin using a group decision-
making technique. Shaikh et al. (2022)  studied the
climatic projections of Western India using global and
regional climate model for the climate variables
precipitation, temperature minimum and maximum in
Hathmati River watershed. CMIP5 models, namely
CCSM4 and CESM1- CAMS5 is bias corrected for the
observed data and CCSM4 is selected further for climate
projection under RCP 4.5 scenario. All the climate
variables such as precipitation, minimum and maximum
temperature showed a significant increase in the mean
value when compared to the baseline (1980 —2019).

From the literature, it is observed that there is a wide
range of single and multiple Performance Criteria
Analysis (PCA) and decision making methods chosen for
ranking of GCMs. In the river basins of India, future
climate change impact studies need to be considered on a
case to case basis. Previous research found that the
competence of the climate model's performance was
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region-specific, with significant variability in climatic
pattern simulation (Raju and Kumar, 2020; Hassen et al.,
2020). Hence, choosing the most appropriate GCMs is
suggested for the climate change impact studies of basins.
The main objective of this paper is to examine variability
and trends of precipitation for the historical period (1901-
2020) and the future period (2025 to 2099) using the best-
fitted high resolution climate model for the study area.

2. Data and methodology
2.1. Study area

The Palar River is one of the major sources of water
that replenish the groundwater in Vellore, Kanchipuram,
and Thiruvanamalai from West to East. Palar is a seasonal
river that contributes to the high urbanization area. The
two-phase shift occurred before the active river path due
to the intensified northeast monsoon, mild neotectonics
activity, and rapid upstream avulsion (Resmi, et al., 2017).
The availability of surface water in the Palar basin has
decreased over the years (Venkatesan, et al., 2019).
Groundwater has become the main source for irrigation
and drinking water sectors (Krishnan and Saravanan,
2022). The basin covers predominantly Archaean
crystalline formations like gneisses and charnockites, and
the remaining are alluvium deposits. The Eastern Ghats
ranges of hills, the plateau region and the coastal plains
are the three main topographical divisions of this basin.
The pediment pediplain erosional landform with a very
gently sloping (towards the bay of bengal) inclined
bedrock surface is predominant. Along the river course,
the active flood plain ranges up to 5 km. The occurrence
of groundwater is a rare source in the hill and valley
region of the upper part of the basin.

The catchment area of the basin is 10228.35 Km?
and lies between the geographic coordinates of Latitude
12°39' N and 12°54' N & Longitude 78°32' E and 79°56'
E. The basin receives an average annual rainfall of
1065.14 mm. The average minimum and maximum
temperatures are around 23.54 °C and 33.29 °C. The basin
covers urban, peri-urban and rural areas. Rapid migration
of the people into the peri-urban area leads to water
scarcity and pollution. Extreme climatological events that
trigger floods and droughts. It has subsequent impacts on
land, and biodiversity. Basin stakeholders rely on the
replenishment of the hydrological system by means of
monsoon rainfall. The basin is at risk to drought and flood
due to the radial increase of the built-up areas, population
growth, and over - exploitation of groundwater (Senthil
kumar and Elango, 2004; Kanagaraj et al., 2018;
Saravanan et al., 2020). An attempt is made in this study
by reviewing the previous studies and identifying the
research gap. The trend pattern of the historic and future

High Resolution Statistically Downscaled Climate Data GCM
NEX - GDDP
Historic Precipitation data (1950-2005) & Future RCP4.5 &
RCP3.5 scenario Precipitation data (20-2009)

Historic Precipitation Data - IMD
(observed data)
(1901-2020)

Performance criteria analysis and
ranking the GCM by entropy method

Selection of GCM representing the study
area rainfall pattern

|

| |

Trend Analysis for the Historic period and Magnitude of Trend
the future period for the sclected GCM Sen slope Estimate for the
I I Historic period and the future
period for the sclected GCM
Parametric Analysis

Non-Parametric Analysis

[ l

Linear Regression ‘

Modified Mann Kendall Test

| l

‘ Climate Change Trend Assessment of Precipitation for Historic and Future Period

Fig. 1. Flowchart of methodology adopted in this study

climate variables is mandatory due to scarce availability
of the water resources in the basin to empower the
understanding of the realistic problem.

2.2. Methodology

The detailed methodology implemented in this study
is discussed in Fig. 1. Indian Meteorological Data (IMD)
high resolution, gridded rainfall data at 0.25° x 0.25°
resolution for the period of 1901-2020 is used in the study
for historic rainfall analysis (Pai, et al., 2014). IMD daily
grid rainfall was developed from more than 3,000 rain
gauge network stations across India and the grid points are
exported for the study area. The grid points locations and
their elevations in the study area are shown in table 1.

A statistically downscaled bias-corrected subset of
climate scenarios derived from the GCM NASA Earth
Exchange-Global Daily Downscaled Projections (NEX-
GDDP) dataset over India for two emission scenarios
Representative  Concentration Pathways (RCPs) 4.5
(moderate emission) and 8.5 (high emission) is used for
the future precipitation analysis (Thrasher, et al., 2012).
Out of 21 bias-corrected high-resolution (0.25° x 0.25°)
datasets, the best-fitted GCM is employed in the study to
assess the future climate change impacts on systems from
2025 - 2099. The position of the grid points and the
elevation of the IMD data and 21 GCM located in the
study area are extracted and presented in Table 1 & Fig. 2.

2.2.1. Selection Of GCM

The performance criteria of each GCM are
analysed using Taylor's diagram & the six - efficiency
criteria. The Taylor diagram is particularly useful for
comparing model strengths & estimating a model's overall
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Fig. 2. Location of study area and grid point

TABLE 1

Description of a grid point in the study area considered for analysis of historic IMD

IMD grid point locations — Historic period

NEX-GDDP grid point locations — Future period

Grid - -

Point | atitude Longitude Ele(v;;mn A;Z:'ﬂi;ﬁ\gam%e Latitude Longitude Ele(vne;;lon A;;?;Lﬁ\\(ﬁrg%e
P1 79 125 209 1054.89 N1 12.625 78.625 1054.89
P2 79.25 125 164 1082.50 N2 12.875 78.625 1082.50
P3 79.5 125 104 1115.05 N3 12.375 78.875 1115.05
P4 79.75 125 46 1163.84 N4 12.625 78.875 1163.84
P5 80 125 18 1256.63 N5 12.875 78.875 1256.63
P6 78.75 12.75 476 917.89 N6 12.375 79.125 917.89
P7 79 12.75 651 1025.9 N7 12.625 79.125 1025.9
P8 79.25 12.75 159 1047.3 N8 12.875 79.125 1047.3
P9 79.5 12.75 116 1136.43 N9 12.625 79.375 1136.43

P10 79.75 12.75 63 1186.02 N10 12.875 79.375 1186.02
P11 80 12.75 45 1276.37 N11 12.625 79.625 1276.37
P12 78.75 13 410 937.78 N12 12.875 79.625 937.78
P13 79 13 292 997.11 N13 12.625 79.875 997.11
P14 79.25 13 201 951.99 N14 12.875 79.875 951.99

performance (Nash and Sutcliffe, 1970; Raju and Kumar,
2020; Hassen et al., 2020). The ‘reference field’ is one
that often represents an observed state, and another is the
‘test field” (typically a model-simulated field). The test
field should be similar to the reference field to achieve the
goal. The indices of the efficiency criteria Root Mean
Square Error (RMSE), Nash Sutcliffe model Efficiency
coefficient (NSE), Pearson coefficient (r), Mean Bias
Error (MBE), Mean Absolute Error (MAE), and index of
agreement (d) are also calculated. The observed data are
denoted as X,pserveq the model data as Yy,,4.; fOr i years

(i=123..., n), X is the mean of the observed data, Y is
the mean of the model data.

The RMSE of average error is calculated by root
mean square error between the actual and the predicted
model values. RMSE is always non-negative, and the
value of '0" indicates a perfect fit to the data.

RMSE = \/Z?=1 (Xobserved,i_ymodel,i)z

n
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NSE indicates the accuracy of the model and plots of
the observed versus simulated data to fit in 1:1 line. The
value of NSE closer to '1" indicates the perfect agreement
with the observed data and '0" indicates that the model has
the exact prediction as the observed mean (Taylor, 2001).
NSE is between —o and +1 for a perfect correlation
between the observed and the model prediction data.

n 2
NSE =1 — 2i=1(Xobserved,i —Ymodel,i)
Z?:l(xobserved,i -X )2

The 'r' is a measure of the strength of the linear
relationship between the observed and predicted values.
The value of r =“1” indicates perfect association with the
model prediction and “0” indicates no association.

n — —
r = Z:i=1(X0bser1ied,i -X )(Ymodel,i -Y)
JZ?:l(Xobserved,i -X )2 JZ?:l(Ymodel,i -v )2

MBE captures the deviation in the prediction. A
positive value indicates that the models overestimate the
observed data and vice versa.

MBE = % ?:1(Xobserved,i - Ymodel,i)

MBE is calculated between the observed and the
predicted value; it can be positive or negative, so the
absolute error must be calculated. MAE is the average of
the absolute differences between the predicted and actual
observation across the test samples. The lower value of
MBE indicates the best performance of the model.

1
MAE = ;Z?=1|Xobse‘rved,i - Ymodel,i|

The index of agreement (d) is not a correlation
measure. It is a measure of the extent to which a model's
prediction is error-free. The ‘d’ is calculated to vary
between 0 and 1. The computed value of 1.0 indicates
perfect agreement between the observed and predicted
values, and 0.0 indicates complete discrepancies.

n 2
d = _ Zi=1(Xobserved,i _Ymodel,i)
- - —.2
2 (Ymoderi= X+ [Xmoderi— XD

The NEX-GDDP GCM for 21 CMIP5 climate
models ranking is done using the entropy method. The
analysis using the entropy method is based on the
available data and its relationship with the performance
indicators (Banda, et al., 2021). The entropy method
measures the weight of each performance indicator
separately and finds the difference between the records in
the payoff matrix. Weights calculated by the entropy
method are assigned to the performance indicators for

ranking the models based on multi-criteria decision
methods. The entropy of the matrix (E}) is given by the
following equation:

-1

Ek = in (n)

Yiz1Pikln (Pix)

where p;, is the payoff matrix, Ej is the entropy value for
indicator ‘k’, and ‘n’ is the number of GCM. The degree
of diversification (D;) represents the value provided by
the result of the performance indicator ‘k’ and is
expressed as follows:

Dkz 1_Ek

Normalized weights(wy,) of the performance
indicators obtained by the entropy method are given
below:

—_ _ Dk
Zz=1 Dy

Wi

The NEX- GDDP GCM data set of 21 GCM for the
historic and future scenarios is exported to the study
region which covers all grid points. The historic climate
variable dataset of the climate models from 1950 to 2005,
are compared with the observed climate variables for
monthly and annual time scale. The efficiency criteria of
each model are estimated using the observed data. The
Taylor’s diagram is also plotted to identify the best fit
model. The Multi criteria decision making entropy
ranking method is used to rank the model and to identify
the best fit model for the study basin for prediction of
future precipitation scenarios.

2.2.2.  Trend analysis method

Parametric and non-parametric approaches identify
significant trends in time series analysis. The time-series
data should be homogenous and independent. Non-
parametric trend tests primarily assume that the data are
independent and do not assume statistical distribution. In
this study, the trend pattern of precipitation is determined
using two non-parametric approaches, Mann-Kendall and
Sen’s slope estimator.

2.2.3. Modified mann-kendal test

Mann-Kendall (MK) trend test is a non-parametric
method most commonly used to investigate trends in
hydro-meteorological, climate and environmental data
(Mann, 1945; Chinchorkar, et al., 2015). Although the
classic MK test is used to identify trends in time series, it
may not be appropriate when the serial correlation in the
data is too high. In this study, a modified MK test
proposed by Yue and Wang (2004) was implemented, in
which the influence of serial correlation on the MK test


https://link.springer.com/article/10.1007/s11069-022-05243-9#ref-CR115

MAUSAM, 77, 1 (January 2026)

was investigated by Monte-Carlo simulation. The serially
correlated data are first detrended and the effective sample
size is calculated using significant serial correlation
coefficients.

2.2.4. Sen slope estimator

Sen (1968) developed the non-parametric technique
for estimating the trend slope. For the given time series X
with n observations in the sample of N data pairs:

Xk_—Xj

S= -
ke—j

Jk#+j

where x; and x, are the values at times j and k (j>K),
respectively.

According to the Sen’s method, the overall estimator
of the slope is the median of these N values of S. The
overall Sen slope estimator S™ is as follows:

Sy + Swv+2)

S* = Sw+1), N is odd; ZTZ,N is even
2

3.  Results and discussion
3.1. Selection of GCM

The results of the selection of GCM are determined
using the Taylor’s plot and the PCA. The performance of
the historic data (1950-2005) of 21 GCM climate models
is evaluated using the Taylor diagram (Fig. 3). The
precipitation correlation of all 21 GCM’s ranges from 0.4
to 0.6, and the RMS varies from 85 mm/day to 120
mm/day. The historic precipitation of GCM ‘MIROC
ESM’ and ‘MIROC ESM CHEM’ has a good correlation
of 0.6 and RMS difference of 85 mm/day.

The PCA is performed using 6 efficiency criteria for
the annual and monthly dataset for the 21 GCM’s. The
objective weights are assigned to the 6 criteria using the
entropy multi criteria decision making method, and the
model is ranked. The objective weights assigned for the
performance criteria are: NSE - 0.272, MBE — 0.153, d -
0.074, RMSE — 0.077, MAE — 0.034, r — 0.390. In the
monthly and annual analysis, MIROC ESM was ranked
‘1’ as shown in Fig. 4. Although the index of agreement of
MIROC ESM CHEM, monthly precipitation analysis is
greater than that of MIROC ESM, the other analysis has
placed the efficiency criteria that has put forward MIROC
ESM to rank ‘1°. In the annual analysis of precipitation
GCM data, MIROC ESM performed as a good model in
all criteria. The analysis of the Taylor’s diagram and the
performance of the efficiency criteria exposed that
MIROC ESM was a good performance model. Hassen et
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Figs. 3(a&b). Taylor diagram of the GCMs projections a) ACCESS
1.0 to GFDL ESM2G b) INMCM4 to NORESM_1

al. (2020) examined the selection of CMIP5 GCM
ensemble of the four top-ranked GCMs, namely
ACCESS1.3, MIROC-ESM, MIROC-ESM-CHM, and
NorESM1-M for the projection of spatio-temporal
changes of precipitation and temperature in the Niger
Delta, Nigeria. MIROC5, CNRM-CM5 and MPI-ESM-LR
were found to be the best performing climate models out
of 24 CMIP5 GCM in Upper Narmada Basin (Pandey et
al., 2019). The selected representative GCM MIROC
ESM was the one of the top representative models that
represent the Indian climatic conditions reported by
researchers and could be used to simulate the study area in
the  future climate  change  impact  studies.
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Fig. 5. Annual average future rainfall projections from MIROC ESM GCM
TABLE 2
MK test analysis and magnitude for the historical precipitation
Station No Annual JF MAM JIAS OND Sen slope mm/year
P1 No Trend |Trend Detected | Trend Detected No Trend No Trend 0.036
p2 No Trend |Trend Detected No Trend No Trend No Trend -0.017
B8 No Trend |Trend Detected No Trend No Trend No Trend -0.599
P4 No Trend |Trend Detected No Trend |Trend Detected No Trend -1.798
P5 No Trend |Trend Detected No Trend No Trend No Trend -0.426
P6 1Trend Detected | Trend Detected No Trend 1Trend Detected No Trend 0.880
P7 No Trend |Trend Detected No Trend No Trend No Trend -0.134
P8 No Trend |Trend Detected No Trend No Trend No Trend 0.517
P9 No Trend |Trend Detected No Trend No Trend No Trend 0.768
P10 No Trend |Trend Detected No Trend No Trend No Trend -0.734
P11 No Trend |Trend Detected No Trend No Trend No Trend -0.407
P12 No Trend |Trend Detected | Trend Detected No Trend 1Trend Detected 0.121
P13 No Trend |Trend Detected No Trend No Trend No Trend 0.042
P14 No Trend |Trend Detected No Trend |Trend Detected No Trend -0.327
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TABLE 3

Change in precipitation of the study area with reference annual average of the base period (2001-2020)

Period RCP 4.5 RCP 8.5
Near Future (2025-2050) 110% 111%
Far Future (2051-2099) 114% 13%
TABLE 4

Sen slope estimator test for the future GCM precipitation

RCP 4.5 RCP 8.5
Grid point Annual JF MAM JIAS OND Annual JF MAM JIAS OND
(mml/year) (mm/season) (mm/year) (mm/season)
N1 0.7436 0.000 0.134 1.680 0.744 0.153 0.000 0.122 0.458 -0.455
N2 0.8206 0.000 0.175 1760  0.821 0.333 0.000 0.150 0.488 -0.355
N3 0.9404 0.003 0.199 1555  0.940 -0.140 0.004 0.081 0.304  -0.494
N4 0.9656 0.000 0.159 1575  0.966 0.109 0.002 0.105 0.516 -0.450
N5 1.0168 0.000 0.174 1668  1.017 0.346 0.001 0.132 0.517 -0.391
N6 1.0558 -0.011 0.242 1754  1.056 0.132 0.000 0.036 0.653 -0.481
N7 1.0435 -0.008 0.225 1861  1.044 0.354 0.000 0.045 0.901 -0.443
N8 1.1185 -0.005 0.223 1835  1.119 0.316 0.000 0.055 0.920 -0.331
N9 1.2652 -0.013 0.219 1727  1.265 0.472 0.002 0.039 0.871 -0.451
N10 1.3018 -0.011 0.211 1739 1302 0.370 0.001 0.051 0.877 -0.396
N11 1.4497 -0.013 0.177 1568  1.450 0.535 0.005 0.038 0.898 -0.392
N12 1.5049 -0.015 0.182 1601  1.505 0.369 0.002 0.045 0.838 -0.376
N13 1.5681 -0.017 0.168 1462  1.568 0.632 0.008 0.029 0.834  -0.361
N14 1.6811 -0.015 0.181 1469 1681 0.480 0.005 0.026 0.823 -0.353

3.2. Trend analysis

The MK statistical test has been widely used to
quantify the significance of trends in hydro-
meteorological time series.

3.2.1. Trend and magnitude analysis of historic
period

The MK test trend analysis and magnitude of historic
precipitation from 1901 to 2020 for annual and seasonal is
presented in Table 2. The trend analysis showed
increasing and decreasing trends in annual precipitation
and seasonal series. At grid point P6 an increasing annual
rainfall trend is observed of 95% confidence interval (0.88
mm/year). Rainfall in the southwest monsoon months is
1.009 mm/year at station P6. Other grid points in the
historic annual precipitation series show no trend pattern
over 120 years (1901-2020). Grid-point location P4
showed an irregular decrease in precipitation (1.798 mm

/year) than the other grid points. Grid points P2, P3 of
Tiruvannamalai district; P4, P5, P10, P11 of Kanchipuram
district; and P7, P14 of Vellore district show decreasing
annual precipitation. Grid points P1, P8, P9 of
Tiruvannamalai district; P6, P12, and P13 of Vellore
district show increasing annual precipitation. The
precipitation variation of the study area over 120 years
decreased by 0.148 mm/year. The JJAS months showed
an increasing trend pattern of 0.048 mm/year from 1901 to
2020. In other seasons JF, MAM, and OND showed a
decreasing magnitude of 0.127 mm/ season,
0.063 mm/season, and 0.099 mm/season. In the historical
period, the monsoonal forward shift and shortening of the
monsoon season happened due to climate change.
However, the same trend pattern was observed in the
Kanchipuram and Vellore district from the previous
studies. Dhanya et al. (2015) studied the climate
variability in Kanchipuram district for the period of 1970-
2000 generally showed a decreasing trend pattern in non-
parametric tests. Rainfall distribution in the southwest
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monsoon season has decreased compared to the northeast
monsoon season. The precipitation data for the period of
10 years from 2008 to 2017 for all the 5 rain gauge
stations in Vellore district was analysed by Venkatesan et
al. (2021). The study concluded that moderate annual
precipitation was received when compared with the
average annual precipitation of Tamil Nadu (920 mm).
Pavithrapriya et al. (2022) observed that rainfall showed
an insignificant decreasing trend in Adirampattinam and
Nagapattinam meteorological stations and an increasing
trend in the IMD grid points in Thanjavur Delta region of
Tamil Nadu for the period of 1970 to 2014. Subrat et al.,
(2023) demonstrated a general decline in yearly monsoon
precipitation across most regions in the states Karnataka,
Gujarat, Rajasthan, and Maharashtra. Amit et al. (2023)
observed the maximum average annual rainfall reduced
from 1,769 to 1,401 mm after 1998 affecting water
availability in Madhya Pradesh, India. The study
highlighted a significant shift in Madhya Pradesh’s
seasonal rainfall distribution after 1998.

3.2.2. Trend and Magnitude Analysis of future
period

The linear trend of the annual average precipitation
of the study area for the future period from 2006 to
2099 is shown in Fig. 5 for moderate and high
emission  scenarios.  The  moderate  emissions
scenario shows an increasing trend, after 2040 the
rainfall will be above the historic annual average.
More than 1600 mm of precipitation can be expected
in the periods 2023, 2050, 2088, and 2099, which is
50% more than the annual average under scenario
RCP 4.5. The years 2029, 2059, 2091, and 2098
may be expected to have more than 1400 mm of
rainfall, 30% more than the annual average of the
scenario RCP 8.5.

The monthly average of historical and future
precipitation is portrayed in Fig. 6. Rainfall is observed to
increase in the months of August, September, and
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Figs. 10(a-d). Spatial variation of annual precipitation in near future period and far future period for RCP 4.5 and RCP 8.5 Scenario

October when compared with the baseline period (1901-
2020) for both scenarios. It is also noted that there is an
increase in the amount of precipitation in southwest
monsoon (JJAS) compared with the northeast monsoon
(OND). There is a slow shift in the paradigm of
monsoonal forward shift and monsoon period reduction
has happened due to climate change. Geetha and Raj
(2015) also synchronised with the findings observed with
the historical precipitation major shift that withdrawal of
northeast monsoon from north coastal Tamilnadu occurs
about 2 weeks prior to the withdrawal from the central and
southern parts of coastal areas in Tamilnadu.

Trend analysis is performed for the future MIROC
ESM GCM precipitation dataset from 2025 to 2099 in
annual and seasonal time scales shown in Figs. 7, 8 and 9.
The change in precipitation variation for the near and far
future period with respect to actual rainfall observed in the
basin from 2000 to 2020 is presented in Table 3. The
average annual precipitation of the near future period for
the moderate and high emission scenarios are 1129.02 mm
and 1148.84 mm. For the moderate and high emission
scenarios, the average annual precipitation for the far
future period is 1176.14 mm and 1065.15 mm,
respectively. The moderate emissions scenario shows an
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increasing trend pattern in the annual and monsoon
months (JJAS and OND). The high emission scenarios do
not show a significant trend pattern in the annual and
seasonal analysis. The Sen slope estimation analysis
shown in Table 4 describes the magnitude of the trend
variation for the future period. The southwest monsoon
month (JJAS) will receive an increase in precipitation of
1.462 to 1.861 mm/season above normal rainfall in the
moderate emission scenario and 0.304 to 0.920
mm/season of rainfall in the high emission scenario. The
northeast monsoon month (OND) will receive an increase
of 0.744 to 1.681 mm/season above normal rainfall in
moderate emission. However, the high emission scenario
in OCD shows a decreasing magnitude of 0.331 to 0.494
mm/season. The summer rainfall (MAM) has increased by
0.2 mm/season but does not follow any trend pattern in
moderate emission. The JF seasonal does not show any
significant trend in the future period.

The spatial variation in annual precipitation in the
near future (2025-2050) and far future period (2051-2099)
is shown in figure 10. In both scenarios of the near future,
the magnitude of precipitation variation resembles the
same. The upper reach of the basin receives less
precipitation in the moderate emission scenario than the
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average annual rainfall of about ~ 5 mm/year where
groundwater was extinct. The moderate emission scenario
shows the increased amount of rainfall of about 1.69 —
3.09 mm/year in the far future period of the annual
precipitation. The high emission scenario shows the
increased amount of rainfall of about 0.92 — 3.16 mm/year
in the far future period of the annual precipitation. The
middle and lower reach of the basin receives high rainfall
during the monsoonal season, where urbanization
clustering has increased in recent years. Future summer
rainfall magnitude is increased compared to the historical
period due to coastal upwelling. The annual rainfall
projections of the RCP4.5 scenario in near future and far
future period with the range of 680 - 1670 mm/year and
876 - 1649 mm/year. Annual rainfall forecasts for the
RCP8.5 scenario in the near and far future range from 926
- 1558 mm/year to 685-1664 mm/year. Dhanya et al.
(2013) observed the projected climate variability of
Kanchipuram district using the A1B scenario using the
PRECIS Regional Climate Model. The rainfall projections
showed decreasing trends for annual mean rainfall with a
range of 700 - 1200 mm for the entire district during the
period 2040 - 2070 with reference to the baseline period
(1970 - 2000). The western part of the district shows the
rainfall distribution of 700 - 900 mm/year and 750 - 950
mm/year for the period 2040 - 2070 and 2070 - 2100.The
eastern and the coastal part of the district shows the
950-1200 mm/year and 1000 - 1250 mm/year for the same
projection period. Pavithrapriya et al. (2022) remarked
that an insignificantly decreasing trend of rainfall over the
period 2015 - 2050 in Thanjavur Delta region of Tamil
Nadu under RCP 4.5 emission scenario of MPI_ESM_LR
CMIP5 model. Shaikh et al. (2022) showed an increase in
precipitation to 1015.54 mm from 936.91 mm in 2050s
projections. The average precipitation is increased around
8.45% with respect to the base line period of 1980 to 2019
using RCP4.5 projections of CCSM4 GCM simulations.
Pandey (2023) used RegCM4-4CCCma-CanESM2 model
in Gujarat, India to simulate the annual rainfall. It was
found to increase during the projected period of 2020-
2099 at the rate of 11.6 mm/decade under RCP 4.5 and
36.7 mm/decade under RCP 8.5.

4. Conclusions

Precipitation is a meteorological element that is
highly variable in space and time. A key strength of the
research is that precipitation analyses are performed for
the historical and future basin level datasets. The
significant findings of the study are that historic temporal
variability and magnitude of precipitation change is less
compared with future scenarios. Annual precipitation for
the 120 years (1901-2020) shows no trend pattern, but the
JF months show a decreasing trend pattern over the
historical period indicating the forward shift of the
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monsoonal months. PCA according to Taylor’s diagram
and efficiency criteria has revealed that MIROC ESM is a
good performer model out of 21 NEX-GDDP GCM, that
simulates the study basin climatology. MIROC-ESM was
used to study the future climate change impact and predict
future climate change scenarios in the Palar basin. The
first half from 2006 to 2099 receives less annual rainfall
than the second half in the moderate emission scenario
and vice versa in the high emission scenario. The annual
and monsoon months show an increasing trend of 1
mm/year in the entire basin at each grid point in the
moderate emission scenario. The precipitation projection
of the high emission scenario does not show a trend
pattern but an increased variability of 0.5 mm/year at each
grid point will be observed. In the first decade of the 21
century, the rainfall in the study area resembles the RCP
4.5 scenario, and the second-decade pattern resembles the
RCP 8.5. Average precipitation may increase by 1030.40
+ 98.58 mm in the near future period and 1030.40 +
145.68 mm in the far future period in the RCP 4.5
scenario. The condition of high emission scenario would
increase the precipitation by 1030.40 + 118.42 mm in the
near future period and 1030.40 + 34.7 mm in the far future
period with reference to the annual average rainfall
received in the study area during 2000-2020.

The basin with the topography of ghats, plateau, and
coastal region with increased precipitation and urban
sprawl can directly result in significant hazards like rapid
runoff, urban flooding, and flood discharge. The extreme
flood and drought events of recent years are omens for the
future. In a focused view of the future precipitation
variability with reference to historic period events the
water managers can rejuvenate the basin's water holding
capacity. The rainfall-runoff and groundwater recharge
rate projection studies in the basin would be future
challenges that would help water resource managers to
implement the policy. The precipitation analysis studies of
a historical and future scenario provide insights into
distinguishing vulnerable zones within the Palar basin that
would help the stakeholders in preliminary planning and
decision-making for integrated water resources
management.
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