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AR — SfRIo-aRed (SW) #Alge &1 #AGH (S, o3, 3T AR RAde) sRa & awl & 7eg
3afer Bl UE AU HET T U il IeT-3eT FiETHT i, S “RHger dog ehaiforer-memd
aedad R, “guagss Hfue suleie R 3R “Salfreher SRR [&G2eN0r & U7 Feh w3
STeRel Fholelel Hisel (GCMs) & 313 &I 3UANT aeh SW Hleadfel 1 sifasgamh & defta an adam
TG A, Hedl-HAisel Tedrwel (MME) EfSCHIUT &1 Hedichel STolkel Teholled Hisel (GCMs) & TRUTAT &
YR W T I o1l #RA & 34 AtEH e su-Asel F 3t AR #7S #@de dr s Rufaet &
|1y el Heg2020 3R 2021 & T ERFS gRANSAT & ded HIRSHd HHhedMME-GCMs &
Alsel H3CYC & & A a7 GalefATl 3ceet fhar arar a1l MME-GCMs 3TaTRa ast 313eqe & ezl &l
et 1982 & 2019 & 3@fy & fav o A @ Rgaw @ 8 avff & Fwme fmar o
f@Fgeies GCMs asT &1 Heaihe faffiee Aifaha faeawolt S Sioarg 3tad, A fawele, At
fagaTfal gashish, qalqaAs qaTarg, &€ M TFarR I (RMSE), @gd«e olieh, AR TROT FHITAT Ferehich
e & |y frar aram Anl FE q@r I fh aw & i gfoed @ e aRE @ HoeR AR yEdd fear
I o7 AT MME-GCMs #e ARA 3R 9RaeT gl W awf & fAaRor & &# 3nea §, Safh
I ARG H 3@ 30 ed & UAS & F AT eI MME-GCMs garT enfas 3R
clifheh FEEEE IOl T TS e @ Hoax fhar arar ¥l ERFS 3manRd sifasgamoft &1 dcamdst
Arereprelld AT & AgA & v BFar ar an srd & 34 Alad @ 3u-Asal § 343 HHEABAT
IShT T 3TN e AT Hehel (ACC), TaTIe TR (BIAS), Udl STl &1 Hefra=Ar (POD), fzam
e & (FAR) 3R Sif@A &R (TS) oI alered &R &1 oo H aig o @ qor & faw, 2020 3k
2021 3 ST 71§ (IMD) Hiwsr @l AlgsT T FwAT: o 3afyr & 3fwa (LPA) & 109% 3R
99% ol 3l IR FS & T 2l IHereT-37eT eI FUTAIT 1 3UAET ek ERF & awT &1 qaiegalit
2020 & AT & AlTgsT 7 LPA & 107% 3R 112% a1 3R 2021 & it & Alged # LPA & 105%
3R 102% 1| st 1 GeiAE Ac-ge-Bdlsd Fa@ W Jger R@mr a1, aeht 2020 & AlgeT & it
0.53 3 0.59 3R 2021 & AT & aN e 3R A Hir eanch At & fav waer: 0.44 3R
0.621

ABSTRACT. The Southwest (SW) monsoon season (June, July, August, and September) is the major period of
rainfall activity in India. This study was mainly concerned with the prediction of the SW monsoon using output of several
General Circulation Models (GCMs) with three different statistical approaches, namely, singular value decomposition-
based multiple regression, supervised principal component regression and canonical correlation analysis. In the present
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study, the Multi-Model Ensemble (MME) approach was evaluated based on the results of General Circulation Models
(GCMs). Precipitation forecast was generated as model output from coarse resolution MME-GCMs under ERFS project
for summer monsoon 2020 and 2021 with April and May month’s initial conditions over 34 meteorological sub-divisions
of India. The performance of the MME-GCMs based precipitation outputs was evaluated against IMD observed
precipitation for the period 1982 to 2019. The evaluation of simulated GCMs precipitation was done with various
statistical analysis like climatological mean, standard deviation, standardized anomaly index, forecast bias, root mean
square error (RMSE), correlation coefficients, and phase coherency index etc. It was observed that the spatial pattern of
precipitation was well captured and presented. Most MME-GCMSs underestimates the distribution of precipitation over
central India and the Western Ghats, while overestimates in the peninsular India. The spatial and temporal correlation
coefficients were well captured by the different MME-GCMs for each region. The verification of ERFS based prediction
was done for the summer monsoon season. The skill scores like Forecast accuracy (ACC), bias score (BIAS), detection
probability (POD), false alarm rate (FAR) and threat score (TS) were calculated using 3*3 contingency table over 34
meteorological sub-divisions of India. For the country as a whole, the observed (IMD) seasonal summer monsoon
precipitation in 2020 and 2021 was 109% and 99% of the long-period average (LPA), respectively. The rainfall forecast
from ERF using two different initial conditions for April and May, were 107% and 112% of the LPA in the 2020 summer
monsoon and 105% and 102% of the LPA in the 2021 summer monsoon. The precipitation forecast was better
represented at metsub-division level i.e. 0.53 and 0.59 during the 2020 monsoon and 0.44 and 0.62 during the 2021
monsoon for the April and May initial conditions, respectively.

Key words — Summer monsoon, GCM, ERF, Forecast verification and MME.

1. Introduction

Approximately 80% of the annual rainfall over the
Indian subcontinent occurs during the Indian Summer
Monsoon Period (ISMP), which spans from June to
September. This four-month period, often referred to by
the abbreviation JJAS (June, July, August, September),
consists of 122 days and is characterized by the dominant
monsoon season (Parthasarathy et al., 1994). The summer
monsoon over India is associated with the complex
structural  system of the land-ocean-atmosphere
phenomenon. Therefore, it was very difficult to predict the
rainfall of the Indian summer monsoon over India. The
characteristics of Indian summer monsoon precipitation
are associated with mesoscale convective activities,
intraseasonal variations, etc. (Koteswaram and Rao, 1963;
Meehl et al., 1993; Kripalani et al,. 2003; Krishnamurti et
al., 2010; Niyogi et al., 2010; Mohanty et al., 2019b). A
seasonal prediction using a dynamical multi-model
technique has predicted the average weather states at any
region for advanced information. Multimodel ensemble
(MME) forecast method have delivered a convincing
capacity to improve forecast in wider regions as
computational approaches The use of mathematical
equations has solved the dynamical and physical processes
ultimately of the atmosphere variables in the modeling
framework for forthcoming time steps (Abbe, 1901;
Richardson, 1922; Phillips, 1956; Smagorinsky, 1963).
Advanced dynamical models, such as atmospheric models
(Pattanaik and Kumar, 2010), coupled ocean-atmosphere
models (Saji et al., 1999; Webster et al., 1999; Ashok et
al., 2004) and coupled land—atmosphere models are used
for improved seasonal prediction.

General circulation models (GCMs) are integrated
with various forecast related systems to deliver monthly
and seasonal forecasts across the globe. The skills of
several studied comparisons of simulated GCM
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precipitation have improved quite well (Gadgil and Sajani,
1998; Krishnamurti et al., 2000; Palmer et al., 2004;
Rajeevan and Nanjundiah, 2009; Kar et al., 2011; Sperber
et al., 2012; Sabeerali et al., 2013; Pillai et al., 2018).
Several GCM products have improved the prediction skill
of the ISMP in India (Webster et al., 1999; Simmons and
Hollingsworth, 2002; Gadgil and Srinivasan, 2011; Nair et
al., 2015). The improvement in the forecast skill of the
various GCM models has considered the physical
processes, data acquisition, data assimilation, ensemble
prediction techniques and computation of high-
performance models to help in operational seasonal
forecasting (Kirtman et al., 2014). The experimental
forecast system created for the North American Multi
Model Ensemble (NAMME) has supported intraseasonal,
seasonal and interannual forecasts of the real-time MME
since August 2011. There are ample indications of
dynamic sub seasonal forecasts which are of acceptable
quality, so it is reasonable to expect that multimodel
approaches will improve the quality of forecasting
(Palmer et al., 2004; Hagedorn et al., 2005; Doblas-Reyes
et al., 2005; Berner et al., 2008; Palmer et al., 2008;
Pegion and Sardeshmukh, 2011).

The International Research Institute for Climate and
Society (IRI) provide MME techniques in collaboration
with National Oceanic and Atmospheric Administration
(NOAA), National Science Foundation (NSF), National
Aeronautics and Space Administration (NASA), U.S.
Department of Energy (DOE) and Asia Pacific Economic
Cooperation (APEC) Climate Center (APCC), Korea. The
IRI utilizes the MME techniques based on atmospheric
and atmosphere-ocean GCMs (AGCMs and AOGCMs).
The performance of the MME predictions has been
evaluated with a significant reduction error, and it has
improved the predictive capability (Kirtman and Min,
2009). The limitations of multimodel ensemble forecasts
arise from the uncertainty of computational errors, initial
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conditions, and the nonlinearity of the atmospheric
process.

The Climate Forecast System Version 2 (CFSv2)
was developed by the National Centres for Environmental
Prediction (NCEP) and it has the potential to provide
forecasts for the sub-seasonal to seasonal scale (Saha et
al., 2014). The India Meteorological Department uses
CFSv2 for skillful prediction of Indian summer monsoon
(Chaudhari et al., 2013; Saha et al., 2014). The coupled
anomaly model NCAR-COLA was developed by the
National Centre for Atmospheric Research (NCAR),
Centre for Ocean-Land-Atmosphere Studies (COLA)
which successfully predicts the EI Nifio Southern
Oscillation (ENSO; Kirtman, 2003; Tippett et al., 2019).
The Geophysical Fluid Dynamics Laboratory (GFDL) is
supported by the Earth System Grid Federation USA at
various resolutions of the GCMs product, adds carbon
system models and enhanced ocean dynamics. The
Environment and Climate Change Canada (ECCC) is the
first organization to develop a dynamic seasonal
forecasting system, which was based on the Historical
Forecasting Project (Derome et al., 2001; Kharin et al.,
2009). The ECCC consists of the Atmospheric General
Circulation Model (Scinocca et al., 2008) and the Global
Spectral Model (Ritchie, 1991; Cote et al., 1998), which
were used to develop an ensemble seasonal prediction.

The experimental real-time extended range forecast
system (ERFS) was developed by a dynamical-statistical
technique using MME approach for predicting the
monthly and seasonal precipitation and temperature
(average, minimum and maximum) at the 34
meteorological subdivisions of India (Mohanty et al.,
2018). This study builds on Mohanty et al. (2019a) by
employing advanced statistical techniques, such as
Singular Value Decomposition, Supervised Principal
Component Regression, and Canonical Correlation
Analysis, to improve the evaluation of seasonal
precipitation predictions at a regional scale. Compared to
Mohanty et al. (2019b), this work utilizes updated global
model outputs, enhancing operational predictability and
more effectively capturing interannual variability for the
Indian summer monsoon. The dynamical approach is
based on the nesting of GCMs to simulate high-resolution
regional-scale consistent physical processes with large-
scale weather evaluation. The statistical approach is based
on the statistical relationships between the regional
climate and the statistical characteristics of the desired
fields assumed from the coarse-resolution GCM data.
Within the statistical approach, the performance of the
different AGCM/AOGCM outputs obtained from different
lead time scales were evaluated using appropriate bias
corrections. The appropriate bias-corrected GCM results
were combined with different statistical techniques, such
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as a simple mean, a multivariate regression technique
based on the singular value decomposition method,
supervised principal component regression (sup-PCR) and
canonical correlation analysis (CCA). The methods like
combined simple ensemble mean (Doblas-Reyes et al.,
2000; Pavan and Doblas-Reyes, 2000; Stephenson and
Doblas-Reyes, 2000; Peng et al., 2002; Palmer et al.,
2004), the regression-improved ensemble mean (Peng et
al., 2002; Kharin and Zwiers, 2003), bias-removed
ensemble mean (Kharin and Zwiers, 2002) and multi
model ensemble mean were included in the analysis
(Krishnamurti et al., 2000a, b. The combined predictions
of the MME showed higher prediction skills as compared
to the individual member models (Krishnamurti et al.,
2000 &, b; Yun et al., 2003, 2005).

The examination of the real-time ERFS generated
forecast products was verified during ISMP for the year
2020 and 2021, with two lead times between April and
May initial conditions (ICs) over the 34 MSDs. The GCM
simulated precipitation was evaluated against IMD’s
observed gridded data during the summer monsoon season
of 1982-2019. The potential of MME models to capture
mean seasonal features and predictability of the ISMP was
also explored during the analysis. The prediction abilities
of MME models can be expected to improve with
prospective research by utilizing statistical/dynamical
downscaling at the regional scale. The outcome of this
analysis would provide a piece of valuable information on
the ERFS forecast product certainty to decision-makers
like the agriculture sector, water management, and
hydropower sector, climate risk and research community
etc.

2. Data and methodology

Brief detail about the North American multi-model
ensemble (NMME) model products is described in this
section as well as the development of the ERFS
methodology.

2.1. Brief detail about the NMME products and
observations

The eight GCM coupled models used in the present
study, their model resolution, the number of ensemble
members, product types, the number of forecast leads (in
months) and references are listed in Table 1. CFSv2 is a
fully coupled model in which interactions occur between
the Earth's atmosphere, oceans, and land (Saha et al.,
2014) with 24 ensemble members. Each initial condition
is made by one ensemble member, and they are initialized
four times a day and six times a month. The CFSv2 has a
spectral triangular truncation of T2126 horizontal
resolution (equivalent to 100 km grid resolution at the
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TABLE 1

Brief details of the GCMs used in this study

Sr. No. Model Resolution  Ensemble members Type References

1 CFS v2 (CFSV2) T126 24 Fully coupled Saha et al. (2014)

2 GFDL-CM2pl-aer04 (GFDLAO4) T42 10 Fully coupled Kirtman et al. (2014)
8 GFDL-CM2p5-FLOR-A06 (GFDLAO06) T42 12 Fully coupled Kirtman et al. (2014)
4 GFDL-CM2p5-FLOR-B01 (GFDLBO01) T42 12 Fully coupled Kirtman et al. (2014)

5 COLA-RSMAS-CCSM4 (COLA) T106 10 Anomaly Coupled Kirtman et al. (2014)

6 CanCM4i T63 10 Fully coupled Merryfield et al. (2013)
7 CanSIPSv2 T63 20 Fully coupled Merryfield et al. (2013)
8 GEM-NEMO T85 10 Fully coupled Smith et al. (2013, 2018)

equator) with 64 vertical sigma-pressure hybrid layers.
The three different versions of the GFDL model are
considered fully coupled models with different ocean
resolutions at T42 horizontal resolution, such as GFDL-
CM2pl-aer04 (GFDLAO4; 10 ensemble members),
GFDL-CM2p5-FLOR-A06 (GFDLAO6; 12 ensemble
members), and GFDL-CM2p5-FLOR-B01 (GFDLBO01; 12
ensemble members), for a 12-month forecast. The COLA4
(COLA-RSMAS-CCSM4) is an Anomaly Coupled model.
University of Miami (RSMAS) supported the Community
Climate System Model version 4.0 (CCSM4) of the
NCAR with 10 ensemble members has T106 horizontal
resolution (equivalent 125 Km grid resolution at the
equator) for 12 months prediction. The CCMEP of ECCC
is based on a multimodel approach for developing a fully
coupled operational model of the Canadian Centre for
Climate Modelling and Analysis (CCCma) Coupled
Climate Model version 4 (CanCM4) with Arctic sea ice
thickness initial conditions (CanCM4i; Merryfield et al.,
2013), the Global Environmental Multiscale, the Nucleus
for European Modelling of the Ocean (GEM-NEMO;
Smith et al., 2013, 2018) and the Canadian Seasonal to
Interannual Prediction System (CanSIPSv2; Merryfield et
al., 2013) with integrated 12 months for each model.
CanCM4i has integrated 10 ensemble members at T63
horizontal resolution (equivalent to 210 km grid resolution
at the equator), with 35 vertical levels and 1 hPa at the
top. GEM-NEMO has a horizontal resolution of a 256 x
128 Gaussian grid (T85) with 79 vertical levels and 0.075
hPa at the top with 10 ensemble members. CanSIPSv2
involves a multimodel ensemble system with two coupled
atmosphere-ocean models, CanCM4i and GEM-NEMO,
with 20 ensemble members.

The eight GCMs simulated precipitation were
compared for April and May ICs during the ISMP for the
period of 1982-2019 (38 years) over the Indian
subcontinent. GCM ensemble members were considered
for average seasonal prediction as well as inter
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comparison for Indian conditions (Johnson et al., 2017;
Trenary et al., 2017; Pillai et al., 2021). IMD daily
gridded precipitation (spatial resolution at 0.25°x0.25°;
Pai et al., 2014) was used for the performance of the
GCMs. The spatial analysis of the eight GCMs simulated
precipitation for April and May ICs used different
statistical techniques, such as climatological mean,
standard deviation, standardized anomaly index, forecast
bias, root mean square error (RMSE), correlation
coefficients and phase coherency index.

2.2. Experimental
forecast

real-time ERFS precipitation

MME techniques were used to generate ERFS
forecasts, such as simple mean ensembles, multiple linear
regressions using singular value decomposition,
supervised principal component regression (Sup-PCR) and
canonical correlation analysis (CCA). The simple mean
ensemble was normalized with their climatological mean
later Standard Deviation (SD) was multiplied by the
observed interannual variation and added to the observed
climatology to obtain the final forecast (Hagedorn et al.,
2005). The multiple linear regression using the singular
value decomposition method was taken as a weighted
MME mean. The use of multiple linear regression
techniques has been utilized in singular value
decomposition (Krishnamurti et al., 2000a, b; Yun et al.,
2003). The Sup-PCA method was implemented in two
stages. In the first stage, the predictor was filtered by the
threshold value of the correlation between the predictor
(model) and predictand (observed). In the second stage,
the use of the rank of PCA was based on the correlation
between observations and the model. Eventually, PCA
founded on its rank is added sequentially to the regression
equation and considered the minimum root mean square
error for a threshold correlation of that model (Fekedulegn
et al.,, 2002; Acharya et al., 2012; Nair et al., 2012;
Nageswararao et al., 2016c). The CCA methods were
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Figs. 1(a&b). Spatial distribution of the summer monsoon season precipitation (mm) obtained by the
IMD for the period 1982 to 2019: a) climatology and b) standard deviation (Sd)

established empirical orthogonal functions (EOFs), and
matrix correlation between predictor and predictand was
added (Wilks, 1995; Barnston and Smith 1996; Yu et al.,
1997; Sinha et al., 2013).

Verification of the ERFS deterministic precipitation
forecast is usually arranged in a 3x3 contingency table, as
shown in Table 2, belonging to the three precipitation
departures categorized as deficit (-20% or less), normal (-
19% to 19%), and excess (20% or more) at 34 MSD. The
multicategory of the contingency table was carried out for
four standards categories to belongs to “Hits”, “Misses”,
“False Alarms”, and “Correct Negatives” that found of the
frequency "yes" and "no" occurrences of forecast. The
quantitative forecast precipitation verifying method was
used for Yes/No events (Brier and Allen, 1951; Murphy et
al., 1989; Murphy and Winkler, 1992; Wilks, 1995) for
different forecast skill scores (Table 3). The forecast
accuracy (ACC) is the ratio of correct predictions over the
total number of events. The bias score (BIAS) is the ratio
of the frequency of forecast events to the frequency of
observed events (Fowler et al., 2012). A perfect forecast is
indicated by no bias, less than one is under forecast, and
more than one is over forecast (Wilks, 2011). The
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probability of detection (POD) is the ratio of the correct
events to the observed events, also understood as the hit
rate while ignoring false alarms. The false alarm ratio
(FAR) is the ratio of false events to forecast events, with
zero representing a perfect forecast. The critical success
index (CSI) is known as the threat score. The correct
negative events are not considered, and the forecast events
are evaluated relative to the observed events. The success
ratio (SR) is the ratio of the hits to the forecast events but
ignores misses.

3. Results and discussion

3.1. Distribution of the observed and GCM

precipitation

The high-resolution gridded daily precipitation data
provided by the IMD were spatially distributed, and the
mean climatology and standard deviation of the summer
monsoon season from 1982-2019 over India was
presented in Figs. 1 (a & b). The spatial distribution of
mean JJAS precipitation (Fig. 1a) was highest in the
Western Ghats (WGs), North-East India (NEI), and
Central India (CI), while the lowest distribution was in
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TABLE 2

Contingency table (3x3) for the deterministic forecast

Observed
Excess Normal Deficit
Forecast Excess Hits Misses False Alarms
Normal Misses Hits False Alarms
Deficit False Alarms Misses Correct Negatives

Excess (20% or more);

Normal (-19% to 19%);

Deficit (-20% or less)

Table 3

Methods for forecast verification

Sr.No. Skill Formula Range Characteristics
1 Accuracy (ACC) Hits + Corret Negatives Otol Perfect: 1
Total
2 Bias score (BIAS) Hits + False Alarms 0tooo Under forecast (BIAS<1)
" Hits + Misses Over forecast (BIAS>1)
3 Probability of detection Hits Otol Perfect: 1
(POD) Hits + Misses
4 False alarm ratio (FAR) False Alarms Otol Perfect: 0
Hits + False Alarms
5  Critical success index (CSI) Hits Otol Perfect: 1
Hits + Misses + False Alarms
6 Success ratio (SR) Hits 0tol  Perfect: 1; SR=1-FAR
Hits + False Alarms
7 Miss ratio (SR) Misses Otol  Perfect: 1; SR=1-POD
Hits + Misses

was in North-West India (NWI) and Interior Peninsular
India (IP1). The maximum distribution of the mean JJAS
precipitation over the WGs and NEI is the favoured
location of the tropical convergence zone during
the summer monsoon season. The average climatological
precipitation for the whole country during the
summer monsoon season of 1982-2019 (38 years) is
approximately 851 mm. The spatial distribution of the
SD (Fig. 1b) for the summer monsoon season of
1982-2019 was maximum, which has a high precipitation
zone and vice versa. The standard deviation of
the precipitation over India was approximately 84.43 mm
for the period JJAS, 1982-2019. The -climatological
mean of the JJAS precipitation was eight GCM
simulations for two initial conditions over India for a
38-years period is illustrated in Fig.2. The pattern
distribution of the simulated JJAS precipitation was
well captured in CFSv2, GFDLAO04, GFDLAO6
and COLA for the April and May ICs. The intensities
of the simulated GCM JJAS precipitation were less
than those of the observation (IMD), except for the COLA
model for April and May ICs. The pattern intensities
of the simulated GCM JJAS precipitation increased
from April to May ICs. The three Canadian models,
CanCMd4i, CanSIPv2 and GEN-NEMO did not capture the
pattern mean JJAS simulated precipitation well for both
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ICs. The mean pattern of JJAS simulated precipitation
intensity was underestimated in most of the GCMs with
both ICs. Most of the GCMs' simulated precipitation was
underestimated during the summer monsoon season
(Sabeerali et al., 2013; Acharya et al., 2014). The spatial
pattern of the SD of eight GCM models was exhibited
throughout India for the summer monsoon season of
1982-2019, with April and May ICs shown in Fig. 3. All
the CGMs simulated JJAS precipitation with less standard
deviation than that of the observation. The CFSv2,
GFDLAO6, GFDLBO01, and COLA have shown a close
SD pattern from the IMD with both ICs in April and May.
The GFDLAOQ6 and GFDLBO01 SDs were highly increased
from April to May ICs. Al the Canadian models did not
capture the SD patterns well, where the deviation ranged
from 35-39 mm with both ICs.

The Standardized Anomaly Index (SAI) was
calculated by the frequency distribution (year-to-year
fluctuations) for the mean JJAS precipitation for the
period 1982-2019 over India, as presented in Fig.4.
According to Edwards and McKee (1997), the SAI is
computed by dividing the precipitation anomalies by the
standard deviation, which gives the cumulative probability
from a normal distribution. The frequency of dry and
rainy years revealed the SAI of precipitation (Agnew and
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Figs. 2(a&b). Spatial distribution of the mean simulated precipitation (mm) during the summer monsoon
season for the period 1982 to 2019: a) April initial condition and b) May initial condition.
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Figs. 4(a&b). Time series of the standardized anomaly index of eight GCM simulations and
observed (IMD) precipitation over all Indian areal means during the summer
monsoon season for the period 1982-2019: a) April initial condition and b) May

initial condition

Chappel, 1999; Bewket and Conway, 2007). The
precipitation from the eight GCM simulations and the
IMD observation is shown in Fig. 4 (a & b), which show
the SAI of the April and May ICs. The normalized time
series of the JJAS precipitation varied year-to-year
and were in very close agreement with the GCM
simulation with observations for May ICs (lead-1) as
compared to April I1Cs (lead-2). While the comparable
sign (SAI) from IMD precipitation for the April I1Cs (total
simulated 38 years) was matched of 22-25 years in
COLA, GFDLA04, CanCM4i, and GFDLAQS, it was a
high match of 26-29 years in CFSv2, GFDLAOS6,
GFDLBO01, CanSIPv2, and GEN-NEMO. In CFSv2,
GFDLAO06, GFDLBO01, CanCM4i, and GEN-NEMO, an
increase in SAIl in the May ICs had a similar indication of
28-31 years, whereas it ranged from 22-27 years in
COLA, GFDLAO04, and CanSIPv2. The SAI was matched
for 22-27 years in COLA, GFDLA04, CanSIPv2, and
GFDLAO06, while the high match was 28-31 years in
CFSv2, GFDLAO06, GFDLBO01, CanCM4i, and GEN-
NEMO. The anomaly index of IMD for both ICs showed
the lowest agreement between COLA and GFDLAO4. The
GCMs with IMD anomalies for April ICs were not
obtained in the summer monsoon seasons of 1983, 1990,
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1997, 1999, 2000, 2016, and 2018; similarly, the May ICs
were not captured in the summer monsoon seasons of
1983, 1997, and 2016. The summer monsoon during
strong El Nifio periods has not been captured by the
majority of the simulated GCM precipitation (Slingo and
Annamalai, 2000).

3.2. Standard errors of the GCM precipitation

The spatial mean precipitation bias (forecast minus
actual) computed for the GCMs simulated with IMD
observations during JJAS 1982-2019 for April and May
ICs is presented in Fig. 5. With the exception of COLA4,
most of the simulated GCM precipitation was less than
expected. The CFSv2, CanCM4i, CanSIPSv2, and GEN-
NEMO have maxima underpredicted in the WGs, central
India, and NEI, whereas maxima overpredicted
precipitation were the COLA and GFDLAO4 over
peninsular India for April and May ICs. The simulated
GCM precipitation was increased in each GCM for April
to May ICs, but the maximum increase was in CFSv2,
GFDLAO4, GFDLA06, GFDLBO01, and COLA. The WGs
for both ICs show the highest negative bias of all
simulated GCM  precipitation. Due to its
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complicated topography, the WGs region of India has very
intense rainfall of about 4000 mm during the summer
monsoon season (Houze, 2012; Das et al., 2017). The
GCMs are given a coarse resolution and are unable to
calculate the orographic precipitation of the WGs. Over
WGs, the GCMs underestimated the summer monsoon
season by roughly 60-80%. For the period of JJAS 1982-
2019 over the Indian subcontinent, Fig. 6 shows the
spatial distribution of the root-mean-square errors
(RMSE), which is a useful indicator of the bias and
relationship between the simulation and observation. The
RMSE is a measurement of a model's error based on
quantitative forecasting data that shows how concentrated
the model data are along the line of observational best fit
(Stanski et al., 1989). For the April and May ICs, the
central Indian plains, the foothills of the Himalayas, and
WGs had the greatest geographical distribution of RMSE
precipitation. Comparing the May ICs to the April ICs, the
May ICs had slightly less RMSE precipitation. In CFSv2,
GFDLAO06, GFDLBO01, CanCM4i, CanSIPSv2, and GEN-
NEMO, the RMSE of the simulated precipitation was
greater.

3.3. Performance skill of GCM precipitation

The correlation coefficient which is used to measure
the prediction skill of the forecast for mean JJAS, 1982-
2019 is presented in Fig. 7. The prediction skills were well
captured in the simulated GCM precipitation over most of
the regions for both 1Cs. The CC value increased all the
simulated GCM precipitation from April to May ICs.
Most of the simulated GCM precipitation has poor
predictability over the Western Himalayas, parts of central
India and NEI for both ICs. The simulated GCM JJAS
precipitation had CCs above 0.5 in CFSv2, GFDLBO01,
CanSIPSv2, and GEN-NEMO with April ICs and in
CFSv2, GFDLAO04, GFDLA06, GFDLB01, CanCM4i,
CanSIPSv2, and GEN-NEMO with May ICs.

The phase coherency index was calculated based on
the direction of the anomaly index of each model and has
a more suitable idea of the performance skills of a
particular model. The phase coherency index was
calculated in the same direction as the positive/negative
anomalies of the models with observations. Fig.8
represents the spatial distribution of the phase coherency
index of individual GCM models with both ICs. The
spatial distribution of the phase coherency index was the
highest over most regions above 0.5 with both ICs. The
highest phase coherency index can be seen in NWI,
central India and P1 in GFDLAQ06, GFDLBO01, CanCM4i,
CanSIPSv2, and GEN-NEMO with April ICs and in
CFSv2, GFDLAO06, GFDLBO01, CanCM4i, CanSIPSv2,
and GEN-NEMO with May ICs. The slightly increased
phase coherency index was found in most of the regions
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from April to May ICs, simulating GCM precipitation.
COLA has a high phase coherency index from May to
April ICs.

Fig. 9 presents a statistical summary of the
correlation coefficients, normalized standard deviation,
and mean percentage biases of the eight GCMs with IMD
precipitation for April and May ICs obtained using the
Taylor diagrams (Taylor, 2001) to assess the performance
of each GCM model. Every GCM model exhibits a
positive association and an increase in ICs from April to
May. For April ICs, the highest CCs are CFSv2 and
GFDLBO01, whereas for May ICs, the greatest CCs are
CFSv2, GFDLAO4, GFDLBO01, and CanSIPSv2. The IMD
with the May to April ICs is much closer than the GCM
normalized standard deviation. In comparison to the five
GCM models that were output with May ICs, the
normalized standard deviation for the seven GCM models
ranges from 0.4 to 0.6.

GFDLAO4, GFDLA06, and GFDLBOl1 have
increased normalized standard deviations from April to
May ICs. Except for COLA for April ICs and COLA and
& GFDLAO4 for May ICs, most GCM models show
negative IMD biases. For the April to May ICs, the mean
percentage biases decreased in the majority of the GCM
models.

3.4. Real-time predicted ERFS forecast and its
verification.

The percentage departures from long-period average
(LPA) precipitation are displayed in the IMD and ERFS
deterministic forecasts with April and May ICs during the
summer monsoons of 2020 and 2021, as shown in Fig.10.
The summer monsoon precipitation received 109% and
99% of its LPA for 2020 and 2021, respectively, over
India. In the summer monsoon of 2020, most of the MSD
had excess/normal precipitation except for Nagaland-
Manipur-Mizoram-Tripura from the northeast region and
western U.P., Uttarakhand, Himachal Pradesh, and J&K
from the northern regions. During JJAS 2020, 14, 15 and
5 MSDs received excess, normal and deficient
precipitation, respectively, out of 34 MSDs. JJAS 2021
had below-normal precipitation, and most of the MSD
received normal precipitation of 21 MSD out of 34 MSD
over central India and south peninsular India. Most excess
precipitation during JJAS 2021 was received in 9 MSD
out of 34 MSD over the west NWI and north PI, while
deficient precipitation was received in 5 MSD out of 34
MSD over the NEI and northern regions of west UP and
J&K. The ERFS deterministic precipitation forecast over
India predicted 107% and 112% during JJAS 2020 and
predicted 105% and 102% during JJAS 2021 with April
and May ICs, respectively. The spatial distribution of
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more)]

precipitation from the LPA is a well-predicted ERFS
forecast from the IMD for both summer monsoon seasons
with both ICs. The ERFS forecast was well captured
where it has received excess/normal precipitation. The
ERFS forecast was poorly captured in the regions that
have deficient precipitation. May ICs have more captured
ERFS forecasts than April I1Cs during the summer
monsoon seasons of 2020 and 2021.

94

The deterministic precipitation forecast was obtained
using a 3x3 contingency table (Table 2) and has a measure
of the skill score (Table 4) that verifies the precipitation
forecast of a forecast and actual observation. The ERFS
precipitation forecast has high ACCs of 0.53 and 0.59 for
JJAS 2020, and 0.44 and 0.62 for JJAS 2021 with April
and May ICs, respectively. The highest ACC was seen in
May ICs compared with April ICs. The JJAS ERFS
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TABLE 4

Verification of the ERFS for monsoons in 2020 and 2021 starting in April and May

ACC BIAS POD FAR CslI SR MR Forecast Error
2020 April 0.53 0.79 0.62 0.22 0.53 0.78 0.38 -2%
May 0.59 0.86 0.69 0.20 0.59 0.80 0.31 3%
2021 April 0.44 0.69 0.52 0.25 0.44 0.75 0.48 -6%
May 0.62 0.83 0.69 0.17 0.61 0.83 031 -3%

precipitation forecast underpredicted the BIAS skill at the
MSD for the 2020 and 2021 seasons. The forecast errors
(actual minus forecast divided by actual) are -2% and 3%
during JJAS 2020 and -6% and -3% during JJAS 2021
with April and May ICs, respectively. The POD had a
value of 0.69 for JJAS 2020 and 2021 with May ICs,
while the lowest POD was 0.44 for JJAS 2021 with April
ICs. The FAR values were lowest, ranging from 0.17 to
0.25 for both summer monsoon seasons with April and
May ICs. The SR skill score is very high, ranging from
0.75 to 0.83 during JJAS 2020 and 2021 with both ICs.
The MR skill score lies between 0.31 to 0.48, and a high
MR score was found in the April ICs compared to the
May ICs.

4.  Conclusions
We evaluated eight GCMs to simulate precipitation
for the inter comparison and performance over

India during the summer monsoon season of 1982-2019.
These results identified the multimodel ensemble models,
that can predict Indian summer monsoon precipitation.
These multimodel ensemble prediction models are
used to generate real-time ERFS forecasts at 34
meteorological  subdivisions of India for the
summer monsoon seasons of 2020 and 2021 with April
and May initial  conditions.  The  real-time
ERFS generation forecast was verified by the 3x3
contingency table used as a measure of the forecast
skill score. The performances of CFSv2, GFDLAO4,
GFDLAO06, GFDLBO01, COLA, CanCM4i, CanSIPv2, and
GEN-NEMO (eight GCM models) were evaluated with
ICs of April and May over India for a 38-year period. The
climatological pattern of JJAS precipitation was well
captured in CFSv2, GFDLAO06, GFDLBO01, and COLA for
April and May ICs, while all three Canadian models of
CanCM4i, CanSIPv2, and GEN-NEMO were not
captured. The intensities of the GCM-simulated
precipitation were smaller than the observations (IMD),
except for the COLA,; however, the pattern precipitation
intensity increased from April to May ICs. However, all
the Canadian models did not capture the distribution
pattern of the standard deviation well with both ICs. The
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standardized anomaly index was in close agreement with
the CFSv2, GFDLA06, GFDLBO01, CanSIPv2, and GEN-
NEMO with observations with 1Cs of April and May. The
spatial distribution of forecast error was underpredicted in
the WGs, central India, and NEI, whereas it was
overpredicted in southern India, as found in the majority
of GCM models.

The root-mean-square errors were maximum over
the mountainous regions and central India, where RMSE
was reduced from April to May ICs in most of the GCMs.
The RMSE simulated precipitation was maximum in
CFSv2, GFDLAOQ6, GFDLBO01, CanCM4i, CanSIPSv2,
and GEN-NEMO with ICs of April and May. The
correlation coefficients and phase coherency index were
the best skills in CFSv2, GFDLBO01, CanSIPSv2,
CanCM4i, and GEN-NEMO over most of the regions for
both ICs.

The JJAS real-time ERFS deterministic precipitation
prediction over India predicted 107% (April 1Cs) and
112% (May ICs), while IMD predicted 109% of its LPA
for 2020. For JJAS 2021, the ERFS precipitation
prediction has 105% (April ICs) and 102% (May ICs)
while IMD has 99% of its LPA. The real-time ERFS
forecast has been well predicted, spatially in most of the
MSDs for both summer monsoon seasons with ICs of
April and May. The ERFS forecast is well predicted for
excess/normal intensity but poorly predicted for deficit
intensity. The verification of the ERFS forecast obtained
by the 3x3 contingency table has high accuracy for May
ICs compared to April conditions. The ERFS forecast
underpredicted the BIAS skill at the MSD. However, the
forecast error over India was like the actual precipitation.
The POD and SR skill scores were high, while the FAR
and MR skill scores were low for May ICs compared to
April ICs.
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