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सार — दक्षऺण-ऩश्चिम (SW) मॉनसून का मौसम (जनू, जऱुाई, अगस्त और ससतंबर) भारत में वषाा की मखु्य 

अवधध है। यह अध्ययन मुख्य रूऩ से तीन अऱग-अऱग सांश्ख्यकीय तरीकों, जसेै “ससगंुऱर वलै्य ूडीकंऩोश्जशन-आधाररत 
मल्टीऩऱ ररगे्रशन”, “सुऩरवाइज्ड प्रसंसऩऱ कंऩोनेंट ररगे्रशन” और “कैनोननकऱ कोररऱेशन प्वचऱेषण” का उऩयोग करके कई 
जनरऱ सकुा ऱेशन मॉडऱ (GCMs) के आउटऩटु का उऩयोग करके SW मॉनसून की भप्वष्यवाणी से संबधंधत था। वतामान 
अध्ययन में, मल्टी-मॉडऱ एन्सेम्बऱ (MME) दृश्ष्टकोण का मूल्यांकन जनरऱ सकुा ऱेशन मॉडऱ (GCMs) के ऩररणामों के 
आधार ऩर ककया गया था। भारत के 34 मौसम प्वऻान उऩ-मंडऱों में अरऱै और मई महीने की शुरुआती श्स्थनतयों के 
साथ ग्रीष्मकाऱीन मॉनसून2020 और 2021 के सऱए ERFS ऩररयोजना के तहत अऩररष्कृत संकल्ऩMME-GCMs से 
मॉडऱ आउटऩटु के रूऩ में वषाा ऩवूाानमुान उत्ऩन्न ककया गया था। MME-GCMs आधाररत वषाा आउटऩटु के रदशान का 
मूल्यांकन 1982 से 2019 की अवधध के सऱए भा. मौ. प्व. प्व.द्वारा देखी गई वषाा के मुकाबऱे ककया गया था। 
ससम्यऱेुटेड GCMs वषाा का मूल्यांकन प्वसभन्न सांश्ख्यकीय प्वचऱेषणों जसेै जऱवाय ुऔसत, मानक प्विऱन, मानकीकृत 
प्वसंगनत सूिकांक, ऩवूाानमुान ऩवूााग्रह, रूट मीन स््वायर त्रटुट (RMSE), सहसंबधं गणुांक, और िरण ससुंगतता सूिकांक 
आटद के साथ ककया गया था। यह देखा गया कक वषाा के स्थाननक रनतरूऩ को अच्छी तरह से कैप्िर और रस्तुत ककया 
गया था। अधधकांश MME-GCMs मध्य भारत और ऩश्चिमी घाटों ऩर वषाा के प्वतरण को कम आकंते हैं, जबकक 
रायद्वीऩीय भारत में इसे अधधक आकंते हैं। रत्येक ऺेत्र के सऱए अऱग-अऱग MME-GCMs द्वारा स्थाननक और 
ऱौककक सहसंबधं गणुांकों को अच्छी तरह से कैप्िर ककया गया था। ERFS आधाररत भप्वष्यवाणी का सत्याऩन 
ग्रीष्मकाऱीन मॉनसून के मौसम के सऱए ककया गया था। भारत के 34 मौसम प्वऻान उऩ-मंडऱों में 3*3 आकश्स्मकता 
तासऱका का उऩयोग करके ऩवूाानमुान सटीकता (ACC), ऩवूााग्रह स्कोर (BIAS), ऩता ऱगाने की सभंावना (POD), समथ्या 
अऱामा दर (FAR) और जोखखम स्कोर (TS) जसेै कौशऱ स्कोर की गणना की गई थी। ऩरेू देश के सऱए, 2020 और 
2021 में देखी गई (IMD) मौसमी ग्रीष्मकाऱीन मॉनसून वषाा क्रमश् ऱबंी अवधध के औसत (LPA) का 109% और 
99% थी। अरऱै और मई के सऱए दो अऱग-अऱग शुरुआती श्स्थनतयों का उऩयोग करके ERF से वषाा का ऩवूाानमुान 
2020 के गमी के मॉनसून में LPA का 107% और 112% था और 2021 के गमी के मॉनसून में LPA का 105% 
और 102% था। वषाा का ऩवूाानमुान मेट-सब-डडवीजन स्तर ऩर बेहतर टदखाया गया, यानी 2020 के मॉनसून के दौरान 
0.53 और 0.59 और 2021 के मॉनसून के दौरान अरऱै और मई की शुरुआती श्स्थनतयों के सऱए क्रमश् 0.44 और 
0.62। 

 

ABSTRACT. The Southwest (SW) monsoon season (June, July, August, and September) is the major period of 

rainfall activity in India. This study was mainly concerned with the prediction of the SW monsoon using output of several 

General Circulation Models (GCMs) with three different statistical approaches, namely, singular value decomposition-
based multiple regression, supervised principal component regression and canonical correlation analysis. In the present 
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study, the Multi-Model Ensemble (MME) approach was evaluated based on the results of General Circulation Models 
(GCMs). Precipitation forecast was generated as model output from coarse resolution MME-GCMs under ERFS project 

for summer monsoon 2020 and 2021 with April and May month’s initial conditions over 34 meteorological sub-divisions 

of India. The performance of the MME-GCMs based precipitation outputs was evaluated against IMD observed 
precipitation for the period 1982 to 2019. The evaluation of simulated GCMs precipitation was done with various 

statistical analysis like climatological mean, standard deviation, standardized anomaly index, forecast bias, root mean 

square error (RMSE), correlation coefficients, and phase coherency index etc. It was observed that the spatial pattern of 
precipitation was well captured and presented. Most MME-GCMs underestimates the distribution of precipitation over 

central India and the Western Ghats, while overestimates in the peninsular India. The spatial and temporal correlation 

coefficients were well captured by the different MME-GCMs for each region. The verification of ERFS based prediction 
was done for the summer monsoon season.  The skill scores like Forecast accuracy (ACC), bias score (BIAS), detection 

probability (POD), false alarm rate (FAR) and threat score (TS) were calculated using 3*3 contingency table over 34 

meteorological sub-divisions of India. For the country as a whole, the observed (IMD) seasonal summer monsoon 
precipitation in 2020 and 2021 was 109% and 99% of the long-period average (LPA), respectively. The rainfall forecast 

from ERF using two different initial conditions for April and May, were 107% and 112% of the LPA in the 2020 summer 
monsoon and 105% and 102% of the LPA in the 2021 summer monsoon. The precipitation forecast was better 

represented at metsub-division level i.e. 0.53 and 0.59 during the 2020 monsoon and 0.44 and 0.62 during the 2021 

monsoon for the April and May initial conditions, respectively. 
 

Key words –  Summer monsoon, GCM, ERF, Forecast verification and MME. 
 

 

 

1. Introduction 

 

Approximately 80% of the annual rainfall over the 

Indian subcontinent occurs during the Indian Summer 

Monsoon Period (ISMP), which spans from June to 

September. This four-month period, often referred to by 

the abbreviation JJAS (June, July, August, September), 

consists of 122 days and is characterized by the dominant 

monsoon season (Parthasarathy et al., 1994). The summer 

monsoon over India is associated with the complex 

structural system of the land-ocean-atmosphere 

phenomenon. Therefore, it was very difficult to predict the 

rainfall of the Indian summer monsoon over India. The 

characteristics of Indian summer monsoon precipitation 

are associated with mesoscale convective activities, 

intraseasonal variations, etc. (Koteswaram and Rao, 1963; 

Meehl et al., 1993; Kripalani et al,. 2003; Krishnamurti et 

al., 2010; Niyogi et al., 2010; Mohanty et al., 2019b). A 

seasonal prediction using a dynamical multi-model 

technique has predicted the average weather states at any 

region for advanced information.  Multimodel ensemble 

(MME) forecast method have delivered a convincing 

capacity to improve forecast in wider regions as 

computational approaches The use of mathematical 

equations has solved the dynamical and physical processes 

ultimately of the atmosphere variables in the modeling 

framework for forthcoming time steps (Abbe, 1901; 

Richardson, 1922; Phillips, 1956; Smagorinsky, 1963). 

Advanced dynamical models, such as atmospheric models 

(Pattanaik and Kumar, 2010), coupled ocean-atmosphere 

models (Saji et al., 1999; Webster et al., 1999; Ashok et 

al., 2004) and coupled land‒atmosphere models are used 

for improved seasonal prediction. 

 

General circulation models (GCMs) are integrated 

with various forecast related systems to deliver monthly 

and seasonal forecasts across the globe. The skills of 

several studied comparisons of simulated GCM 

precipitation have improved quite well (Gadgil and Sajani, 

1998; Krishnamurti et al., 2000; Palmer et al., 2004; 

Rajeevan and Nanjundiah, 2009; Kar et al., 2011; Sperber 

et al., 2012; Sabeerali et al., 2013; Pillai et al., 2018). 

Several GCM products have improved the prediction skill 

of the ISMP in India (Webster et al., 1999; Simmons and 

Hollingsworth, 2002; Gadgil and Srinivasan, 2011; Nair et 

al., 2015). The improvement in the forecast skill of the 

various GCM models has considered the physical 

processes, data acquisition, data assimilation, ensemble 

prediction techniques and computation of high-

performance models to help in operational seasonal 

forecasting (Kirtman et al., 2014). The experimental 

forecast system created for the North American Multi 

Model Ensemble (NAMME) has supported intraseasonal, 

seasonal and interannual forecasts of the real-time MME 

since August 2011. There are ample indications of 

dynamic sub seasonal forecasts which are of acceptable 

quality, so it is reasonable to expect that multimodel 

approaches will improve the quality of forecasting 

(Palmer et al., 2004; Hagedorn et al., 2005; Doblas-Reyes 

et al., 2005; Berner et al., 2008; Palmer et al., 2008; 

Pegion and Sardeshmukh, 2011). 

 

The International Research Institute for Climate and 

Society (IRI) provide MME techniques in collaboration 

with National Oceanic and Atmospheric Administration 

(NOAA), National Science Foundation (NSF), National 

Aeronautics and Space Administration (NASA), U.S. 

Department of Energy (DOE) and Asia Pacific Economic 

Cooperation (APEC) Climate Center (APCC), Korea. The 

IRI utilizes the MME techniques based on atmospheric 

and atmosphere-ocean GCMs (AGCMs and AOGCMs). 

The performance of the MME predictions has been 

evaluated with a significant reduction error, and it has 

improved the predictive capability (Kirtman and Min, 

2009). The limitations of multimodel ensemble forecasts 

arise from the uncertainty of computational errors, initial 
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conditions, and the nonlinearity of the atmospheric 

process. 

 

The Climate Forecast System Version 2 (CFSv2) 

was developed by the National Centres for Environmental 

Prediction (NCEP) and it has the potential to provide 

forecasts for the sub-seasonal to seasonal scale (Saha et 

al., 2014). The India Meteorological Department uses 

CFSv2 for skillful prediction of Indian summer monsoon 

(Chaudhari et al., 2013; Saha et al., 2014). The coupled 

anomaly model NCAR-COLA was developed by the 

National Centre for Atmospheric Research (NCAR), 

Centre for Ocean-Land-Atmosphere Studies (COLA) 

which successfully predicts the El Niño Southern 

Oscillation (ENSO; Kirtman, 2003; Tippett et al., 2019). 

The Geophysical Fluid Dynamics Laboratory (GFDL) is 

supported by the Earth System Grid Federation USA at 

various resolutions of the GCMs product, adds carbon 

system models and enhanced ocean dynamics. The 

Environment and Climate Change Canada (ECCC) is the 

first organization to develop a dynamic seasonal 

forecasting system, which was based on the Historical 

Forecasting Project (Derome et al., 2001; Kharin et al., 

2009). The ECCC consists of the Atmospheric General 

Circulation Model (Scinocca et al., 2008) and the Global 

Spectral Model (Ritchie, 1991; Cote et al., 1998), which 

were used to develop an ensemble seasonal prediction. 

 

The experimental real-time extended range forecast 

system (ERFS) was developed by a dynamical-statistical 

technique using MME approach for predicting the 

monthly and seasonal precipitation and temperature 

(average, minimum and maximum) at the 34 

meteorological subdivisions of India (Mohanty et al., 

2018). This study builds on Mohanty et al. (2019a) by 

employing advanced statistical techniques, such as 

Singular Value Decomposition, Supervised Principal 

Component Regression, and Canonical Correlation 

Analysis, to improve the evaluation of seasonal 

precipitation predictions at a regional scale. Compared to 

Mohanty et al. (2019b), this work utilizes updated global 

model outputs, enhancing operational predictability and 

more effectively capturing interannual variability for the 

Indian summer monsoon. The dynamical approach is 

based on the nesting of GCMs to simulate high-resolution 

regional-scale consistent physical processes with large-

scale weather evaluation. The statistical approach is based 

on the statistical relationships between the regional 

climate and the statistical characteristics of the desired 

fields assumed from the coarse-resolution GCM data. 

Within the statistical approach, the performance of the 

different AGCM/AOGCM outputs obtained from different 

lead time scales were evaluated using appropriate bias 

corrections. The appropriate bias-corrected GCM results 

were combined with different statistical techniques, such 

as a simple mean, a multivariate regression technique 

based on the singular value decomposition method, 

supervised principal component regression (sup-PCR) and 

canonical correlation analysis (CCA). The methods like 

combined simple ensemble mean (Doblas-Reyes et al., 

2000; Pavan and Doblas-Reyes, 2000; Stephenson and 

Doblas-Reyes, 2000; Peng et al., 2002; Palmer et al., 

2004), the regression-improved ensemble mean (Peng et 

al., 2002; Kharin and Zwiers, 2003), bias-removed 

ensemble mean (Kharin and Zwiers, 2002) and multi 

model ensemble mean were included in the analysis 

(Krishnamurti et al., 2000a, b. The combined predictions 

of the MME showed higher prediction skills as compared 

to the individual member models (Krishnamurti et al., 

2000 a, b; Yun et al., 2003, 2005). 

 

The examination of the real-time ERFS generated 

forecast products was verified during ISMP for the year 

2020 and 2021, with two lead times between April and 

May initial conditions (ICs) over the 34 MSDs. The GCM 

simulated precipitation was evaluated against IMD’s 

observed gridded data during the summer monsoon season 

of 1982-2019. The potential of MME models to capture 

mean seasonal features and predictability of the ISMP was 

also explored during the analysis. The prediction abilities 

of MME models can be expected to improve with 

prospective research by utilizing statistical/dynamical 

downscaling at the regional scale. The outcome of this 

analysis would provide a piece of valuable information on 

the ERFS forecast product certainty to decision-makers 

like the agriculture sector, water management, and 

hydropower sector, climate risk and research community 

etc. 

 

2. Data and methodology 

 

Brief detail about the North American multi-model 

ensemble (NMME) model products is described in this 

section as well as the development of the ERFS 

methodology. 

 

2.1. Brief detail about the NMME products and 

observations 

 

The eight GCM coupled models used in the present 

study, their model resolution, the number of ensemble 

members, product types, the number of forecast leads (in 

months) and references are listed in Table 1. CFSv2 is a 

fully coupled model in which interactions occur between 

the Earth's atmosphere, oceans, and land (Saha et al., 

2014) with 24 ensemble members. Each initial condition 

is made by one ensemble member, and they are initialized 

four times a day and six times a month. The CFSv2 has a 

spectral triangular truncation of T126 horizontal 

resolution (equivalent to 100 km grid resolution at the 
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TABLE 1 

 

Brief details of the GCMs used in this study 

 

Sr. No. Model Resolution Ensemble members Type References 

1 CFS v2 (CFSV2) T126 24 Fully coupled Saha et al. (2014) 

2 GFDL-CM2p1-aer04 (GFDLA04) T42 10 Fully coupled Kirtman et al. (2014) 

3 GFDL-CM2p5-FLOR-A06 (GFDLA06) T42 12 Fully coupled Kirtman et al. (2014) 

4 GFDL-CM2p5-FLOR-B01 (GFDLB01) T42 12 Fully coupled Kirtman et al. (2014) 

5 COLA-RSMAS-CCSM4 (COLA) T106 10 Anomaly Coupled Kirtman et al. (2014) 

6 CanCM4i T63 10 Fully coupled Merryfield et al. (2013) 

7 CanSIPSv2 T63 20 Fully coupled Merryfield et al. (2013) 

8 GEM-NEMO T85 10 Fully coupled Smith et al. (2013, 2018) 

 

 

equator) with 64 vertical sigma-pressure hybrid layers. 

The three different versions of the GFDL model are 

considered fully coupled models with different ocean 

resolutions at T42 horizontal resolution, such as GFDL-

CM2p1-aer04 (GFDLA04; 10 ensemble members), 

GFDL-CM2p5-FLOR-A06 (GFDLA06; 12 ensemble 

members), and GFDL-CM2p5-FLOR-B01 (GFDLB01; 12 

ensemble members), for a 12-month forecast. The COLA4 

(COLA-RSMAS-CCSM4) is an Anomaly Coupled model. 

University of Miami (RSMAS) supported the Community 

Climate System Model version 4.0 (CCSM4) of the 

NCAR with 10 ensemble members has T106 horizontal 

resolution (equivalent 125 Km grid resolution at the 

equator) for 12 months prediction. The CCMEP of ECCC 

is based on a multimodel approach for developing a fully 

coupled operational model of the Canadian Centre for 

Climate Modelling and Analysis (CCCma) Coupled 

Climate Model version 4 (CanCM4) with Arctic sea ice 

thickness initial conditions (CanCM4i; Merryfield et al., 

2013), the Global Environmental Multiscale, the Nucleus 

for European Modelling of the Ocean (GEM-NEMO; 

Smith et al., 2013, 2018) and the Canadian Seasonal to 

Interannual Prediction System (CanSIPSv2; Merryfield et 

al., 2013) with integrated 12 months for each model. 

CanCM4i has integrated 10 ensemble members at T63 

horizontal resolution (equivalent to 210 km grid resolution 

at the equator), with 35 vertical levels and 1 hPa at the 

top. GEM-NEMO has a horizontal resolution of a 256 × 

128 Gaussian grid (T85) with 79 vertical levels and 0.075 

hPa at the top with 10 ensemble members. CanSIPSv2 

involves a multimodel ensemble system with two coupled 

atmosphere-ocean models, CanCM4i and GEM-NEMO, 

with 20 ensemble members. 

 

The eight GCMs simulated precipitation were 

compared for April and May ICs during the ISMP for the 

period of 1982-2019 (38 years) over the Indian 

subcontinent. GCM ensemble members were considered 

for average seasonal prediction as well as inter 

comparison for Indian conditions (Johnson et al., 2017; 

Trenary et al., 2017; Pillai et al., 2021). IMD daily 

gridded precipitation (spatial resolution at 0.25°×0.25°; 

Pai et al., 2014) was used for the performance of the 

GCMs. The spatial analysis of the eight GCMs simulated 

precipitation for April and May ICs used different 

statistical techniques, such as climatological mean, 

standard deviation, standardized anomaly index, forecast 

bias, root mean square error (RMSE), correlation 

coefficients and phase coherency index. 

 

2.2. Experimental real-time ERFS precipitation 

forecast 

 

MME techniques were used to generate ERFS 

forecasts, such as simple mean ensembles, multiple linear 

regressions using singular value decomposition, 

supervised principal component regression (Sup-PCR) and 

canonical correlation analysis (CCA). The simple mean 

ensemble was normalized with their climatological mean 

later Standard Deviation (SD) was multiplied by the 

observed interannual variation and added to the observed 

climatology to obtain the final forecast (Hagedorn et al., 

2005). The multiple linear regression using the singular 

value decomposition method was taken as a weighted 

MME mean. The use of multiple linear regression 

techniques has been utilized in singular value 

decomposition (Krishnamurti et al., 2000a, b; Yun et al., 

2003). The Sup-PCA method was implemented in two 

stages. In the first stage, the predictor was filtered by the 

threshold value of the correlation between the predictor 

(model) and predictand (observed). In the second stage, 

the use of the rank of PCA was based on the correlation 

between observations and the model. Eventually, PCA 

founded on its rank is added sequentially to the regression 

equation and considered the minimum root mean square 

error for a threshold correlation of that model (Fekedulegn 

et al., 2002; Acharya et al., 2012; Nair et al., 2012; 

Nageswararao et al., 2016c). The CCA methods were
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Figs. 1(a&b). Spatial distribution of the summer monsoon season precipitation (mm) obtained by the 
IMD for the period 1982 to 2019: a) climatology and b) standard deviation (Sd) 

 

 

established empirical orthogonal functions (EOFs), and 

matrix correlation between predictor and predictand was 

added (Wilks, 1995; Barnston and Smith 1996; Yu et al., 

1997; Sinha et al., 2013). 

 

Verification of the ERFS deterministic precipitation 

forecast is usually arranged in a 3×3 contingency table, as 

shown in Table 2, belonging to the three precipitation 

departures categorized as deficit (-20% or less), normal (-

19% to 19%), and excess (20% or more) at 34 MSD. The 

multicategory of the contingency table was carried out for 

four standards categories to belongs to “Hits”, “Misses”, 

“False Alarms”, and “Correct Negatives” that found of the 

frequency "yes" and "no" occurrences of forecast. The 

quantitative forecast precipitation verifying method was 

used for Yes/No events (Brier and Allen, 1951; Murphy et 

al., 1989; Murphy and Winkler, 1992; Wilks, 1995) for 

different forecast skill scores (Table 3). The forecast 

accuracy (ACC) is the ratio of correct predictions over the 

total number of events. The bias score (BIAS) is the ratio 

of the frequency of forecast events to the frequency of 

observed events (Fowler et al., 2012). A perfect forecast is 

indicated by no bias, less than one is under forecast, and 

more than one is over forecast (Wilks, 2011). The 

probability of detection (POD) is the ratio of the correct 

events to the observed events, also understood as the hit 

rate while ignoring false alarms. The false alarm ratio 

(FAR) is the ratio of false events to forecast events, with 

zero representing a perfect forecast. The critical success 

index (CSI) is known as the threat score. The correct 

negative events are not considered, and the forecast events 

are evaluated relative to the observed events. The success 

ratio (SR) is the ratio of the hits to the forecast events but 

ignores misses. 

 

3. Results and discussion 

 

3.1. Distribution of the observed and GCM 

precipitation 

 

The high-resolution gridded daily precipitation data 

provided by the IMD were spatially distributed, and the 

mean climatology and standard deviation of the summer 

monsoon season from 1982-2019 over India was 

presented in Figs. 1 (a & b). The spatial distribution of 

mean JJAS precipitation (Fig. 1a) was highest in the 

Western Ghats (WGs), North-East India (NEI), and 

Central  India  (CI),  while  the  lowest  distribution was in 
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TABLE 2 

 

Contingency table (3×3) for the deterministic forecast 

 

 Observed 

 

Forecast 

 Excess Normal Deficit 

Excess Hits Misses False Alarms 

Normal Misses Hits False Alarms 

Deficit False Alarms Misses Correct Negatives 

Excess (20% or more);  Normal (-19% to 19%);  Deficit (-20% or less) 

 
Table 3 

 

Methods for forecast verification 
 

Sr.No. Skill Formula Range Characteristics 

1 Accuracy (ACC)                      

     
 

0 to 1 Perfect: 1 

2 Bias score (BIAS)                  

           
 

0 to ∞ Under forecast (BIAS<1) 

Over forecast (BIAS>1) 

3 Probability of detection 

(POD) 

    

           
 

0 to 1 Perfect: 1 

4 False alarm ratio (FAR)             

                 
 

0 to 1 Perfect: 0 

5 Critical success index (CSI)     

                        
 

0 to 1 Perfect: 1 

6 Success ratio (SR)     

                 
 

0 to 1 Perfect: 1; SR=1-FAR 

7 Miss ratio (SR)       

           
 

0 to 1 Perfect: 1; SR=1-POD 

 
 

was in North-West India (NWI) and Interior Peninsular 

India (IPI). The maximum distribution of the mean JJAS 

precipitation over the WGs and NEI is the favoured 

location of the tropical convergence zone during                        

the summer monsoon season. The average climatological 

precipitation for the whole country during the                   

summer monsoon season of 1982-2019 (38 years) is 

approximately 851 mm. The spatial distribution of the               

SD (Fig. 1b) for the summer monsoon season of                   

1982-2019 was maximum, which has a high precipitation 

zone and vice versa. The standard deviation of                         

the precipitation over India was approximately 84.43 mm 

for the period JJAS, 1982-2019. The climatological               

mean of the JJAS precipitation was eight GCM 

simulations for two initial conditions over India for a                

38-years period is illustrated in Fig.2. The pattern 

distribution of the simulated JJAS precipitation was               

well captured in CFSv2, GFDLA04, GFDLA06                        

and COLA for the April and May ICs. The intensities                   

of the simulated GCM JJAS precipitation were less                  

than those of the observation (IMD), except for the COLA 

model for April and May ICs. The pattern intensities                 

of the simulated GCM JJAS precipitation increased              

from April to May ICs. The three Canadian models, 

CanCM4i, CanSIPv2 and GEN-NEMO did not capture the 

pattern mean JJAS simulated precipitation well for both 

ICs. The mean pattern of JJAS simulated precipitation 

intensity was underestimated in most of the GCMs with 

both ICs. Most of the GCMs' simulated precipitation was 

underestimated during the summer monsoon season 

(Sabeerali et al., 2013; Acharya et al., 2014). The spatial 

pattern of the SD of eight GCM models was exhibited 

throughout India for the summer monsoon season of 

1982-2019, with April and May ICs shown in Fig. 3. All 

the CGMs simulated JJAS precipitation with less standard 

deviation than that of the observation. The CFSv2, 

GFDLA06, GFDLB01, and COLA have shown a close 

SD pattern from the IMD with both ICs in April and May. 

The GFDLA06 and GFDLB01 SDs were highly increased 

from April to May ICs. Al the Canadian models did not 

capture the SD patterns well, where the deviation ranged 

from 35-39 mm with both ICs. 
 

The Standardized Anomaly Index (SAI) was 

calculated by the frequency distribution (year-to-year 

fluctuations) for the mean JJAS precipitation for the 

period 1982-2019 over India, as presented in Fig.4. 

According to Edwards and McKee (1997), the SAI is 

computed by dividing the precipitation anomalies by the 

standard deviation, which gives the cumulative probability 

from a normal distribution. The frequency of dry and 

rainy years revealed the SAI of precipitation (Agnew and 
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Figs. 2(a&b). Spatial distribution of the mean simulated precipitation (mm) during the summer monsoon 

season for the period 1982 to 2019: a) April initial condition and b) May initial condition. 
Eight global climate model (GCM) products are obtained by CFSV2, GFDLA04, 

GFDLA06, GFDLB01, COLA, CanCM4i, CanSIPSv2 and GEM-NEMO 

 

 
 

Figs. 3(a&b). Spatial distribution of SD for precipitation (mm) during the summer monsoon season for the 

period 1982-2019: a) April initial condition and b) May initial condition 
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Figs. 4(a&b). Time series of the standardized anomaly index of eight GCM simulations and 

observed (IMD) precipitation over all Indian areal means during the summer 
monsoon season for the period 1982-2019: a) April initial condition and b) May 

initial condition 

 

 

Chappel, 1999; Bewket and Conway, 2007). The 

precipitation from the eight GCM simulations and the 

IMD observation is shown in Fig. 4 (a & b), which show 

the SAI of the April and May ICs. The normalized time 

series of the JJAS precipitation varied year-to-year           

and were in very close agreement with the GCM 

simulation with observations for May ICs (lead-1) as 

compared to April ICs (lead-2). While the comparable 

sign (SAI) from IMD precipitation for the April ICs (total 

simulated 38 years) was matched of 22-25 years in 

COLA, GFDLA04, CanCM4i, and GFDLA06, it was a 

high match of 26-29 years in CFSv2, GFDLA06, 

GFDLB01, CanSIPv2, and GEN-NEMO. In CFSv2, 

GFDLA06, GFDLB01, CanCM4i, and GEN-NEMO, an 

increase in SAI in the May ICs had a similar indication of 

28-31 years, whereas it ranged from 22-27 years in 

COLA, GFDLA04, and CanSIPv2. The SAI was matched 

for 22-27 years in COLA, GFDLA04, CanSIPv2, and 

GFDLA06, while the high match was 28-31 years in 

CFSv2, GFDLA06, GFDLB01, CanCM4i, and GEN-

NEMO. The anomaly index of IMD for both ICs showed 

the lowest agreement between COLA and GFDLA04. The 

GCMs with IMD anomalies for April ICs were not 

obtained in the summer monsoon seasons of 1983, 1990, 

1997, 1999, 2000, 2016, and 2018; similarly, the May ICs 

were not captured in the summer monsoon seasons of 

1983, 1997, and 2016. The summer monsoon during 

strong El Niño periods has not been captured by the 

majority of the simulated GCM precipitation (Slingo and 

Annamalai, 2000). 

 

3.2. Standard errors of the GCM precipitation 

 

The spatial mean precipitation bias (forecast minus 

actual) computed for the GCMs simulated with IMD 

observations during JJAS 1982-2019 for April and May 

ICs is presented in Fig. 5. With the exception of COLA4, 

most of the simulated GCM precipitation was less than 

expected. The CFSv2, CanCM4i, CanSIPSv2, and GEN-

NEMO have maxima underpredicted in the WGs, central 

India, and NEI, whereas maxima overpredicted 

precipitation were the COLA and GFDLA04 over 

peninsular India for April and May ICs. The simulated 

GCM precipitation was increased in each GCM for April 

to May ICs, but the maximum increase was in CFSv2, 

GFDLA04, GFDLA06, GFDLB01, and COLA. The WGs 

for both ICs show the highest negative bias of all 

simulated GCM precipitation. Due to its 
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Figs. 5(a&b). Spatial distribution of bias error from the observed IMD for precipitation (mm) during the 

summer monsoon season for the period 1982-2019: a) April initial condition and b) May initial 
condition 

 

 
 

Figs. 6(a&b). Spatial distribution of RMSE from the observed IMD for precipitation (mm) during the 

summer monsoon season for the period 1982-2019: a) April initial condition and b) May initial 
condition 
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complicated topography, the WGs region of India has very 

intense rainfall of about 4000 mm during the summer 

monsoon season (Houze, 2012; Das et al., 2017). The 

GCMs are given a coarse resolution and are unable to 

calculate the orographic precipitation of the WGs. Over 

WGs, the GCMs underestimated the summer monsoon 

season by roughly 60-80%. For the period of JJAS 1982-

2019 over the Indian subcontinent, Fig. 6 shows the 

spatial distribution of the root-mean-square errors 

(RMSE), which is a useful indicator of the bias and 

relationship between the simulation and observation. The 

RMSE is a measurement of a model's error based on 

quantitative forecasting data that shows how concentrated 

the model data are along the line of observational best fit 

(Stanski et al., 1989). For the April and May ICs, the 

central Indian plains, the foothills of the Himalayas, and 

WGs had the greatest geographical distribution of RMSE 

precipitation. Comparing the May ICs to the April ICs, the 

May ICs had slightly less RMSE precipitation. In CFSv2, 

GFDLA06, GFDLB01, CanCM4i, CanSIPSv2, and GEN-

NEMO, the RMSE of the simulated precipitation was 

greater. 

 

3.3. Performance skill of GCM precipitation 

 

The correlation coefficient which is used to measure 

the prediction skill of the forecast for mean JJAS, 1982-

2019 is presented in Fig. 7. The prediction skills were well 

captured in the simulated GCM precipitation over most of 

the regions for both ICs. The CC value increased all the 

simulated GCM precipitation from April to May ICs. 

Most of the simulated GCM precipitation has poor 

predictability over the Western Himalayas, parts of central 

India and NEI for both ICs. The simulated GCM JJAS 

precipitation had CCs above 0.5 in CFSv2, GFDLB01, 

CanSIPSv2, and GEN-NEMO with April ICs and in 

CFSv2, GFDLA04, GFDLA06, GFDLB01, CanCM4i, 

CanSIPSv2, and GEN-NEMO with May ICs. 

 

The phase coherency index was calculated based on 

the direction of the anomaly index of each model and has 

a more suitable idea of the performance skills of a 

particular model. The phase coherency index was 

calculated in the same direction as the positive/negative 

anomalies of the models with observations. Fig.8 

represents the spatial distribution of the phase coherency 

index of individual GCM models with both ICs. The 

spatial distribution of the phase coherency index was the 

highest over most regions above 0.5 with both ICs. The 

highest phase coherency index can be seen in NWI, 

central India and PI in GFDLA06, GFDLB01, CanCM4i, 

CanSIPSv2, and GEN-NEMO with April ICs and in 

CFSv2, GFDLA06, GFDLB01, CanCM4i, CanSIPSv2, 

and GEN-NEMO with May ICs. The slightly increased 

phase coherency index was found in most of the regions 

from April to May ICs, simulating GCM precipitation. 

COLA has a high phase coherency index from May to 

April ICs. 

 

Fig. 9 presents a statistical summary of the 

correlation coefficients, normalized standard deviation, 

and mean percentage biases of the eight GCMs with IMD 

precipitation for April and May ICs obtained using the 

Taylor diagrams (Taylor, 2001) to assess the performance 

of each GCM model. Every GCM model exhibits a 

positive association and an increase in ICs from April to 

May. For April ICs, the highest CCs are CFSv2 and 

GFDLB01, whereas for May ICs, the greatest CCs are 

CFSv2, GFDLA04, GFDLB01, and CanSIPSv2. The IMD 

with the May to April ICs is much closer than the GCM 

normalized standard deviation. In comparison to the five 

GCM models that were output with May ICs, the 

normalized standard deviation for the seven GCM models 

ranges from 0.4 to 0.6. 

 

GFDLA04, GFDLA06, and GFDLB01 have 

increased normalized standard deviations from April to 

May ICs. Except for COLA for April ICs and COLA and 

& GFDLA04 for May ICs, most GCM models show 

negative IMD biases. For the April to May ICs, the mean 

percentage biases decreased in the majority of the GCM 

models. 

 

3.4. Real-time predicted ERFS forecast and its 

verification. 

 

The percentage departures from long-period average 

(LPA) precipitation are displayed in the IMD and ERFS 

deterministic forecasts with April and May ICs during the 

summer monsoons of 2020 and 2021, as shown in Fig.10. 

The summer monsoon precipitation received 109% and 

99% of its LPA for 2020 and 2021, respectively, over 

India. In the summer monsoon of 2020, most of the MSD 

had excess/normal precipitation except for Nagaland-

Manipur-Mizoram-Tripura from the northeast region and 

western U.P., Uttarakhand, Himachal Pradesh, and J&K 

from the northern regions. During JJAS 2020, 14, 15 and 

5 MSDs received excess, normal and deficient 

precipitation, respectively, out of 34 MSDs. JJAS 2021 

had below-normal precipitation, and most of the MSD 

received normal precipitation of 21 MSD out of 34 MSD 

over central India and south peninsular India. Most excess 

precipitation during JJAS 2021 was received in 9 MSD 

out of 34 MSD over the west NWI and north PI, while 

deficient precipitation was received in 5 MSD out of 34 

MSD over the NEI and northern regions of west UP and 

J&K. The ERFS deterministic precipitation forecast over 

India predicted 107% and 112% during JJAS 2020 and 

predicted 105% and 102% during JJAS 2021 with April 

and May ICs, respectively. The spatial distribution of
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Figs. 7(a&b). Spatial distribution of temporal correlation coefficients between observed IMD for 

precipitation (mm) during the summer monsoon season for the period 1982-2019: a) April 
initial condition and b) May initial condition 

 

 

 
 

Figs. 8(a&b). Spatial distribution of the phase coherency of the individual GCM standardized precipitation 

anomaly index and IMD observed dataset during the summer monsoon season for the period 

from 1982 to 2019: a) April initial condition and b) May initial condition 
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Figs. 9(a&b) Taylor diagrams exhibiting the correlation coefficients, normalized standard deviations 

and mean percentage biases of the eight GCM simulations and observed (IMD) 
precipitation during the summer monsoon season for the period 1982-2019: a) April initial 

condition and b) May initial condition. The mean percentage bias is positive in the 

upwards triangle and negative in the downwards triangle. 

 

 
 

Figs. 10(a-c). Percentage departure precipitation of the long period average (LPA) of the actual (IMD) and 
ERFS deterministic forecasts during the summer monsoon season over the 34 

meteorological subdivisions and over all of India: a) IMD, b) April initial condition and c) 

May initial condition obtained for 2020 (top row) and 2021 (bottom row). The four 
precipitation categories are recognized based on the percentage departure of LPA, viz. 

excess [20% or more], normal [-19% to 19%], deficit [-59% to -20%] and scanty [-60% or 

more] 

 

 

precipitation from the LPA is a well-predicted ERFS 

forecast from the IMD for both summer monsoon seasons 

with both ICs. The ERFS forecast was well captured 

where it has received excess/normal precipitation. The 

ERFS forecast was poorly captured in the regions that 

have deficient precipitation. May ICs have more captured 

ERFS forecasts than April ICs during the summer 

monsoon seasons of 2020 and 2021. 

The deterministic precipitation forecast was obtained 

using a 3×3 contingency table (Table 2) and has a measure 

of the skill score (Table 4) that verifies the precipitation 

forecast of a forecast and actual observation. The ERFS 

precipitation forecast has high ACCs of 0.53 and 0.59 for 

JJAS 2020, and 0.44 and 0.62 for JJAS 2021 with April 

and May ICs, respectively. The highest ACC was seen in 

May ICs compared with April ICs. The JJAS ERFS
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TABLE 4 

 

Verification of the ERFS for monsoons in 2020 and 2021 starting in April and May 

 

  ACC BIAS POD FAR CSI SR MR Forecast Error 

2020 April 0.53 0.79 0.62 0.22 0.53 0.78 0.38 -2% 

May 0.59 0.86 0.69 0.20 0.59 0.80 0.31 3% 

2021 April 0.44 0.69 0.52 0.25 0.44 0.75 0.48 -6% 

May 0.62 0.83 0.69 0.17 0.61 0.83 0.31 -3% 

 

 
 

 

precipitation forecast underpredicted the BIAS skill at the 

MSD for the 2020 and 2021 seasons. The forecast errors 

(actual minus forecast divided by actual) are -2% and 3% 

during JJAS 2020 and -6% and -3% during JJAS 2021 

with April and May ICs, respectively. The POD had a 

value of 0.69 for JJAS 2020 and 2021 with May ICs, 

while the lowest POD was 0.44 for JJAS 2021 with April 

ICs. The FAR values were lowest, ranging from 0.17 to 

0.25 for both summer monsoon seasons with April and 

May ICs. The SR skill score is very high, ranging from 

0.75 to 0.83 during JJAS 2020 and 2021 with both ICs. 

The MR skill score lies between 0.31 to 0.48, and a high 

MR score was found in the April ICs compared to the 

May ICs. 

 

4. Conclusions 

 

We evaluated eight GCMs to simulate precipitation 

for the inter comparison and performance over                    

India during the summer monsoon season of 1982-2019. 

These results identified the multimodel ensemble models, 

that can predict Indian summer monsoon precipitation. 

These multimodel ensemble prediction models are                

used to generate real-time ERFS forecasts at 34 

meteorological subdivisions of India for the                    

summer monsoon seasons of 2020 and 2021 with April 

and May initial conditions. The real-time                           

ERFS generation forecast was verified by the 3x3 

contingency table used as a measure of the forecast                   

skill score. The performances of CFSv2, GFDLA04, 

GFDLA06, GFDLB01, COLA, CanCM4i, CanSIPv2, and 

GEN-NEMO (eight GCM models) were evaluated with 

ICs of April and May over India for a 38-year period. The 

climatological pattern of JJAS precipitation was well 

captured in CFSv2, GFDLA06, GFDLB01, and COLA for 

April and May ICs, while all three Canadian models of 

CanCM4i, CanSIPv2, and GEN-NEMO were not 

captured. The intensities of the GCM-simulated 

precipitation were smaller than the observations (IMD), 

except for the COLA; however, the pattern precipitation 

intensity increased from April to May ICs. However, all 

the Canadian models did not capture the distribution 

pattern of the standard deviation well with both ICs. The 

standardized anomaly index was in close agreement with 

the CFSv2, GFDLA06, GFDLB01, CanSIPv2, and GEN-

NEMO with observations with ICs of April and May. The 

spatial distribution of forecast error was underpredicted in 

the WGs, central India, and NEI, whereas it was 

overpredicted in southern India, as found in the majority 

of GCM models. 

 

The root-mean-square errors were maximum over 

the mountainous regions and central India, where RMSE 

was reduced from April to May ICs in most of the GCMs. 

The RMSE simulated precipitation was maximum in 

CFSv2, GFDLA06, GFDLB01, CanCM4i, CanSIPSv2, 

and GEN-NEMO with ICs of April and May. The 

correlation coefficients and phase coherency index were 

the best skills in CFSv2, GFDLB01, CanSIPSv2, 

CanCM4i, and GEN-NEMO over most of the regions for 

both ICs. 

 

The JJAS real-time ERFS deterministic precipitation 

prediction over India predicted 107% (April ICs) and 

112% (May ICs), while IMD predicted 109% of its LPA 

for 2020. For JJAS 2021, the ERFS precipitation 

prediction has 105% (April ICs) and 102% (May ICs) 

while IMD has 99% of its LPA. The real-time ERFS 

forecast has been well predicted, spatially in most of the 

MSDs for both summer monsoon seasons with ICs of 

April and May. The ERFS forecast is well predicted for 

excess/normal intensity but poorly predicted for deficit 

intensity. The verification of the ERFS forecast obtained 

by the 3×3 contingency table has high accuracy for May 

ICs compared to April conditions. The ERFS forecast 

underpredicted the BIAS skill at the MSD. However, the 

forecast error over India was like the actual precipitation. 

The POD and SR skill scores were high, while the FAR 

and MR skill scores were low for May ICs compared to 

April ICs. 
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