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सार — किसी िैरेंडय ददवस भें िभ-दृश्मता घटनाओॊ िी अवधध िा ऩवूाानभुान रगाना एि िदिन प्रकिमा है, 

क्मोंकि इन घटनाओॊ िे आयॊब औय सभाप्तत िी प्रकिमाएॉ जदटर तथा अव्मवप्थथत (chaotic) होती हैं। कपय बी,          
मह जानिायी हवाई अड्डा सेवाओॊ िे सॊचारन (ववभानों िी सभम-सायणी, हवाई अड्डों िा अनिूुर सॊचारन)                
तथा ववभबन्न गततववधधमों (मात्रा, ऩमाटन, िृवष आदद) िी मोजना िे भरए अत्मॊत उऩमोगी है। मह अध्ममन                
1500 UTC (सभप्न्वत सावाबौभभि सभम) िी प्रायॊभबि ऩरयप्थथततमों िे आधाय ऩय किसी ददन भें                   
िभ-दृश्मता घटनाओॊ—िोहया (सतही दृश्मता<1000 भीटय) औय घना िोहया (सतही दृश्मता<200 भीटय)—िी               
अवधध िा सटीि तनिट-ऩवूाानभुान ियने हेत ु आधायबूत भशीन रतनिंग (ML) भॉडरों [राइट गे्रडडएॊट                 
फपू्थटॊग भशीन (LightGBM), यैंडभ पॉयेथट (RF) औय सऩोटा वेक्टय रयगे्रशन (SVR)] िे सवोत्तभ सॊमोजन                 
से एि गततशीर बारयत एन्सेम्फर भॉडर वविभसत ियने िा प्रमास ियता है।सतही भौसभीम भानदॊडों—वामु               
ताऩभान, ओसाॊि ताऩभान, साऩेऺ आर्द्ाता, ऩवन (प्रत्मेि 3 घॊटे), वषाा (दैतनि) औय धऩू अवधध (दैतनि)—तथा ऊऩयी 
वामभुॊडरीम भानदॊडों—1000, 925 औय 850 hPa थतयों ऩय ऩवन, ताऩभान औय साऩेऺ आर्द्ाता (प्रत्मेि 3 घॊटे)—िो 
िभ-दृश्मता घटनाओॊ िी अवधध िे सटीि तनिट-ऩवूाानभुान हेत ु सवोत्तभ व्माख्मात्भि िायिों िे चमन िे भरए 
सप्म्भभरत किमा गमा। अॊततभ भॉडर व्माख्मात्भि चय चनुने हेत ु ऩीमयसन सहसॊफॊध गणुाॊि औय थऩीमयभैन यैंि 
सहसॊफॊध गुणाॊि िा उऩमोग किमा गमा। डाटासेट्स िा ऩमावेक्षऺत ML एल्गोरयद्भों द्वाया प्रभशऺण, ऩयीऺण, भॉडभरॊग 
औय िॉस-वभैरडेशन िे ववभबन्न चयणों भें ववथततृ ववश्रेषण किमा गमा। सबी सवोत्तभ सॊमोजन भॉडरों िी सटीिता िा 
भूल्माॊिन औय तुरना MAE (भीन एब्सोल्मटू एयय), RMSE औय R² (तनधाायण गणुाॊि) िे भाध्मभ से िी गई। R² िे 
आधाय ऩय मह ऩामा गमा कि प्रथताववत गततशीर बारयत एन्सेम्फर भॉडर ने सवारेेषठ ि ऩवूाानभुान सटीिता प्रदभशात िी—
एि ददन िे अधग्रभ सभम (lead time) िे भरए िोहये औय घने िोहये िी अवधध हेत ुिभश् 0.89 औय 0.88। मह 
LightGBM (0.79), RF (0.78) औय SVR (0.76) िी तुरना भें फेहतय है। अत् मह अध्ममन िोहया-प्रवण इॊडो-
गॊगेदटि भैदान (IGP) भें हवाई अड्डा सभम-सायणी िे थवचारन औय सॊचारन िे अनिूुरन भें भशीन रतनिंग िी ऺभता 
िो येखाॊकित ियता है। 

 

 

ABSTRACT. The prediction of the duration of the occurrence of low-visibility events in a calendar day is a 

difficult process because of the complex and chaotic mechanisms of the onset and dissipation of the low-visibility events. 

However, it is most useful for the operation of airport services (scheduling of aircraft, optimal operations of the airports) 

and the planning of any activities (travel, tourism, agriculture, etc.). This research tries to build the best dynamic 

weighted ensemble of the best combination of base machine learning (ML) models (Light Gradient Boosting Machine 

(Light GBM), Random Forest (RF), and Support Vector Regression (SVR)) to accurately nearcast the duration of low 

visibility events (fog (surface visibility <1000 m) and dense fog (surface visibility <200 m) for a calendar day based on 

the initial conditions of 1500 UTC (Universal Time Co-Ordinate). Conditions such as surface meteorological parameters 

(air temperature, dew point temperature, relative humidity, wind (every 3 hours), rainfall (daily), and sunshine (daily)) 

and upper air meteorological parameters (wind, temperature, and relative humidity of 1000, 925, and 850 hPa (every 3 

MAUSAM, 77, 1(January 2026), 203-218 

 

 

 

 

 
DOI: https://doi.org/10.54302/q6zxvb08 

Homepage: https://mausamjournal.imd.gov.in/index.php/MAUSAM 



 

 

                          MAUSAM, 77, 1 (January 2026) 

204 

hours)) were taken into account to find the best set of explanatory factors for the accurate nearcasting of the duration of 

the low visibility events. The Pearson correlation coefficient and Spearman's rank correlation coefficient were used to 

choose the final set of model explanatory variables. The datasets were thoroughly examined using supervised ML 

algorithms at the various stages of training, testing, modelling, and cross validation. All the best combination models' 

accuracy was evaluated and compared using performance measures, namely MAE (mean absolute error), RMSE (root 

mean square error), and R2 (R squared error). Based on the coefficient of determination (R2), it can be observed that the 

suggested dynamic weighted ensemble model exhibits the best level of prediction accuracy, specifically 0.89 and 0.88 for 

the duration of fog and dense fog for a given lead time of a day. This surpass the accuracy of LightGBM (0.79), RF 

(0.78), and SVR (0.76) for the prediction of the duration of fog. Therefore, this study highlights the potential of ma-chine 

learning in facilitating the advancement of automation in airport scheduling and optimizing the operations of airports, 

specifically in the fog-prone Indo-Gangetic Plains (IGP).  
 

Key words  –  Duration of low-visibility events, Weighted ensemble, Machine learning, Nearcasting, Airport 
operations. 

 

 

 

 

 

 

 

1. Introduction 

 

Fog is a meteorological phenomenon characterized 

by a boundary layer containing a significant accumulation 

of water droplets or ice crystals; as a consequence, 

visibility is diminished to a distance of less than 1 

kilometer (World Meteorological Organization 2019). Fog 

has been the subject of an abundance of research, which 

has utilized a wide range of methodologies and 

perspectives (Gultepe et al., 2007; Long et al., 2021; 

Lakra and Avishek, 2022; Bari et al., 2023; Shankar and 

Sahana, 2023a). The effects of fog on humans and the 

local economy have been the subject of an abundance of 

research (Pérez-Díaz et al., 2017; Peng et al., 2018; Gu et 

al., 2019). Extensive fog considerably hinders the 

movement of sea, land, rail, and air transportation, leading 

to considerable economic consequences (Belaroussi and 

Gruyer, 2014; Gultepe et al., 2017; Wu et al., 2018; 

Kulkarni et al., 2019; Chandu et al., 2022; Shankar and 

Giri, 2024). (Tyagi et al., 2017, 2020) unveiled worrisome 

patterns of increased fog prevalence and land, and air 

pollution in the Indo-Gangetic Plain (IGP) from 

November to February. Concerns have been expressed 

regarding the socioeconomic ramifications of these 

environmental changes in light of these findings (Gautam 

et al., 2007). (Hosea, 2019; Mitsokapas et al., 2021) posit 

that the occurrence of dense fog at airports causes aircraft 

to be diverted, delayed, or cancelled, thereby causing 

passenger inconvenience and financial detriment to 

airlines (Kulkarni et al., 2019). Severe visibility 

conditions, specifically those falling below 1000 meters, 

impede the operations of major airports situated in a 

specific geographic region (Hosea 2019). Diminished 

visibility can have a substantial detrimental effect on air 

navigation. In 2017, a dense fog episode in India resulted 

in the tragic loss of 11,000 lives due to road accidents, and 

21 flights were disrupted at Patna airport in December 

2017, causing substantial economic losses (Shankar and 

Sahana, 2023b). The expenses related to fog events and 

the duration of fog (the period between onset and 

dissipation) are currently as expensive as the occurrence 

of thunderstorms (Gultepe et al., 2007). Slower operations 

at airports during the duration of the fog cost several 

thousand dollars every day (Dietz et al., 2019). So, for 

airports to run as smoothly and efficiently as possible, 

they need better nearcasting (with a one- to two-day 

advance) for the duration of fog events, mostly so that 

airlines and operators can plan their schedules of flight. 

The advancement of observation and monitoring 

platforms and networks improves data quality as well as 

the historical database (Izett et al., 2019). AI/ML 

(artificial intelligence/machine learning) analytical 

capabilities may improve next-generation fog-episode 

predictions based on historical datasets. This strategy can 

improve decision support systems for low-visibility events 

and improve the decision-making process. The nearcasting 

of the duration of fog is a huge challenge, as it is 

associated with complex atmospheric processes. However, 

the forecasters‟ understanding of the local conditions, 

ability to extract the desired input, and understanding of 

the algorithms improve the data-driven nearcasting of the 

duration of low-visibility events (fog and dense fog). The 

proposed nearcasting model, which is a dynamic weighted 

ensemble of the best combination of the base ML models 

(SVR, RF, and light GBM), predicts the durations of the 

low-visibility events (fog and dense fog) of a calendar day 

at the initial conditions of 1500 UTC. The surface 

meteorological datasets of Patna Airport for the synoptic 

hours (03 hourly) of the parameters Temperature, Dew 

Point Temperature, Relative Humidity, and u and v 

components of winds and daily rainfall and sunshine and 

corresponding upper air data derived from the Indian 

Monsoon Data Assimilation and Analysis reanalysis 

(IMDAA) dataset (Indirarani et al., 2021) and the target 

duration of low visibility events ( fog (visibility <1000 m) 

and dense fog (visibility <200 m)) derived from the 

instrumental visibility dataset. The IMDAA datasets and 

observed datasets of the Patna airport are representative of 

the fog-prone IGP regions. Therefore, the proposed 

techniques may be used at any location in the IGP regions 
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without any further changes in their algorithms or data 

ingestion. The novelty of the research article is outlined as 

 

(i) This study investigates the optimal combinations of 

the best base ML models that are well-suited for the 

conditions of Indo-Gangetic Plains (IGP) regions. 

Additionally, it proposes a dynamic weighted ensemble 

approach that exhibits superior generalization ability and 

default sample recognition ability while also preserving 

the robustness and interpretability of the model's results. 

 

(ii) Ensemble modelling reduces bias in prediction 

results by creating sub-datasets with varying sample 

imbalance ratios and training base models with targeted 

prediction abilities for specific sample classes. Integration 

leads to improvements in both base-model 

complementarity and overall performance. 

 

(iii) It is planned to make a dynamic weighted ensemble 

method that is more flexible and has a changing balancing 

effect. The ensemble weight is changed for each sample 

that needs to be predicted based on the different prediction 

results of each base model and how well they recognized 

specific class samples in the validation stage. This makes 

setting the weights even more flexible. 

 

(iv) Therefore, this research suggests an alternate 

forecasting technique for the most essential nearcasting of 

the duration of low visibility in a calendar day. 

 

The subsequent sections of this work are structured 

in the following manner:  Section 2 discusses the previous 

related works and the following: Section 3 of the paper 

presents the observed dataset and the architecture of the 

proposed ML dynamic weighted ensemble model. Section 

4 contains a comprehensive evaluation and analysis of the 

assessment outcomes, along with a detailed discourse on 

these findings. The findings and implications of our study 

are presented in Section 5. 

 

1.1. Related work 

 

Two kinds of current state-of-the-art visibility 

prediction algorithms are summarized in Table 1. The first 

category includes creating NWP models that employ fluid 

mechanics and thermodynamic equations to forecast 

weather and its progression. To forecast the onset and 

dissipation of fog, i.e., the duration of fog, meteorologists 

have created numerous NWP models. For instance, 

(Bergot et al., 2005) created a one-dimensional numerical 

model to anticipate reduced visibility near Charles de 

Gaulle Airport. To anticipate reduced visibility in coastal 

zones, (Müller et al., 2010; Dhangar et al., 2021) and 

(Parde et al., 2022) used three-dimensional numerical 

models. Moreover, mesoscale  models  like  WRF  models  

TABLE 1 

 
Various state-of-the-art methods for the prediction of low visibility. 

 

Categories Author Year Method Study Area 

Predicted 

Time 

Interval 

NWP  

Based 

(Bergot  

et al., 2005) 
2005 

One dimensional 

COBEL model 
Airport 

30 min to 

6 h 

(Müller  
et al., 2010) 

2010 
Three dimension 

model 

Complex 

topographic 

terrain 

03 hours 

(Melo  

et al., 2023) 
2023 

One Dimension 

PAFOG model 

North East 

Brazil 
06 hours 

(Parde 

 et al., 2022) 
2022  WRF model IGP regions 03 hours 

Meteoro-

logical  

Feature 
 Based 

(Koziara, 
M., Robert, 

J., 

Thompson 
1983) 

1982 
Multiple linear 

regression model 
Marine Area 24 hours 

(Miao et al., 

2020) 
2020 Deep Learning 

Traffic 

Freeway 

01 to 04 

hours 
(Shankar and 

Sahana 

2023b) 

2023 
Ensemble 
modelling 

Airport 
01 to 06 

hours 

(Zhai et al., 

2023) 
2023 Ensemble learning Freeway 15 Min 

 
 

replicate fog generation, dissipation, and development 

(Román-Cascón et al., 2012, 2016; Steeneveld et al., 

2015; Ryerson and Hacker 2018; Pithani et al., 2019; 

Pahlavan et al., 2021). While these models may mimic fog 

generation and progression, they mostly forecast visibility 

in mesoscale places like airports and coastal areas. Certain 

geographical places, such as airports and coastal regions, 

exhibit a wide range of microclimatic conditions that vary 

across both temporal and spatial dimensions. It is 

imperative to incorporate this information into models, 

which therefore leads to an escalation in the expenses 

associated with state-of-the-art monitoring devices. 

Numerical weather prediction (NWP) models need the use 

of precise data and robust computational resources, 

rendering them challenging for accurately forecasting 

short-term visibility under location-specific 

circumstances. 

 

A different way to predict visibility is to build 

prediction models by looking at the relationship between 

fog formation and certain weather conditions, such as 

wind speed, humidity, air temperature, barometric 

pressure, rainfall, etc. Fog formation occurs when the 

temperature approaches the dew point and there are 

enough condensation nodules in the air (Pulugurtha et al., 

2019). These weather elements are fed into visibility 

prediction statistical models (Román-Cascón et al., 2016; 

Cornejo-Bueno et al., 2021). Most statistical models are 

simpler than NWP models. While most fog forecasting 

research focuses on the sea (Gultepe et al., 2017; Han et 
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Fig. 1. The geographical location of Jay Prakash Narayan International Airport Patna (a) India (b)State of 

Bihar, India (c) Capital Cities of Patna and its Airport 
 

 

al., 2021) or airports (Teixeira and Miranda 2001; Dutta 

and Chaudhuri 2015; Cornejo-Bueno et al., 2017; Shankar 

and Sahana, 2023b), statistical models can anticipate             

fog events hours in advance, enabling proactive 

management measures. Statistical approaches have      

limited prediction capability; hence, machine learning 

methods are being used to create models that can           

handle non-linear connections. Many machine-              

learning approaches have been studied, such                        

as probabilistic neural networks, multilayer perceptron‟s, 

Bayesian decision networks, ordinal classification,                

and support vector machines (Guijo-Rubio et al.,                

2018; Ortega et al., 2020; Bartok et al., 2022). These 

strategies train base learners using historical 

meteorological data and develop a correlation between 

visibility and meteorological parameters. Limited 

information in training data may restrict the selection of 

the best learner, resulting in lower prediction capabilities. 

Ensemble learning will be used to forecast visibility to 

compensate for the errors of the previous approaches. 

Multiple researchers tackle the same issue in this machine 

learning paradigm (Zhu et al., 2018; Shahhosseini et al., 

2022; Shankar and Sahana 2023b). Ensemble learning 

typically outperforms base learners in generalization 

ability. Ensemble learning techniques may improve 

prediction accuracy and computational time and prevent 

overfitting in theoretical and practical investigations 

(Huang et al., 2018; Shahhosseini et al., 2022; Shankar 

and Sahana 2023b). Ensemble learning offers efficient 

computation and the capacity to handle the complicated 

non-linear connection between visibility and 

meteorological factors. Most of these studies try to predict 

fog (visibility<1000) or no fog (visibility>1000 m), 

dissipation of fog as a classification issue, and visibility as 

a regression problem. None of these studies tries to predict 

the duration of fog in calendar days, which includes the 

onset and dissipation of low-visibility events in advance. 

Also, most of these studies work well in a matter of a few 

hours (Nowcasting). Previous studies have had lots of 

issues with estimating weakness, as mentioned (Vorndran 

et al., 2022), and none of them attempted to forecast the 

duration of the fog. The accurate prediction of it directly 

serves the needs of the end users. This study tries to 

predict and suggests dynamic weighted ensemble models 

predict the duration of fog and dense fog with practical 

implementation in the optimal operations of the airports in 

a lead time of a few days (nearcasting) with satisfactory 

operations. Pearson correlation coefficients 

and Spearman‟s rank correlation coefficients identify the 

best meteorological variables linked to the duration of 

low-visibility events. Next, the dynamic weighted and 

simple ML algorithms (RF, Light GBM, and SVR) create 

short-term prediction models (nearcast model). The 

prediction performance and computational costs of the 

proposed dynamic weighted ensemble models are 

compared to those of baseline benchmarked models. Also, 

the proposed approach is tested for the different sets of 

data from the representative station of the IGP regions 

(Patna Airport). 
 

2. Data and methodology 

 
2.1. Study area 

 
The specific sites within the Indo-Gangetic Plain 

(IGP) regions, which are sandwiched between the 

southern Plateau and the Northern Himalaya (as shown in 

Fig. 1.), are the focus of estimating the duration of low-

(a) 
(b) 

(c) 
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TABLE 2 

 
The details of the input datasets and targets used in the prediction of the duration of fog and dense fog specific to the conditions  

of IGP regions (representative station: Patna Airport) 

 

Type Input/Target Variables Unit Indicator Source 

Surface 
Meteorological 

Data 

(Instrumental) 

Air Temperature 

(Synoptic Hours i.e 03 hourly) 
°C 

18DB,21DB,00DB,03DB,06DB,09,DB,12DB,15D
B 

Automatic Weather 
Observing Station (AWoS), 

IMD 

Dew Point Temperature 

(Synoptic Hours i.e 03 hourly) 
°C 18DP,21DP,00DP,03DP,06DP,09,DP,12DP,15DP 

Relative Humidity 

(Synoptic Hours i.e 03 hourly) 
% 18RH,21RH,00RH,03RH,06RH,09RH,12RH,15RH 

U wind 

(Synoptic Hours i.e 03 hourly) 
knots 

18UWIND,21UWIND,00 UWIND,03UWIND,06 

UWIND,09UWIND,12UWIND,15UWIND 

V wind 

(Synoptic Hours i.e 03 hourly) 
knots 

18VWIND,21VWIND,00 VWIND,03VWIND,06 
VWIND,09VWIND,12VWIND,15VWIND 

Rainfall 

(Daily) 
In mm Rainfall 

Class I Observatory at 

Patna (IMD) 

Sunshine 

(Daily) 
Hours Sunshine  

Upper Air 
Sounding Data 

(IMDAA) 

Temperature 

(03 hourly) of 1000,925 and 

850 hPa 

°C 

18T1000,21T1000,00T1000,03T1000,06T1000,09,
T1000,12T1000,15T1000,18T925,21T925,00T925,

03T925,06T925,09,T925,12T925,15T925,18T850,2
1T850,00T850,03T850,06T850,09,T850,12T850, 

reanalysis 15T850. 

Derived point Data from 

IMDAA Gridded dataset 

Relative humidity( 03 hourly) 

of 1000,925 and 850 hPa 
% 

18RH1000,21RH1000,00RH1000,03RH1000,06RH

1000,09,RH1000,12RH1000,15RH1000,18RH925,2
1RH925,00RH925,03RH925,06RH925,09,RH925,1

2RH925,15RH925,18RH850,21RH850,00RH850,0

3RH850,06RH850,09,RH850,12RH850,15RH850. 

U Wind ( 03 hourly) of 

1000,925 and 850 hPa 
Knots 

18VW1000,21VW1000,00VW1000,03VW1000,06
VW1000,09,VW1000,12VW1000,15VW1000,18V

W925,21VW925,00VW925,03VW925,06VW925,0

9,VW925,12VW925,15VW925,18VW850,21VW85
0,00VW850,03VW850,06VW850,09,VW85 

,12VW850,15VW850. 

V Wind( 03 hourly) of 
1000,925 and 850 hPa 

knots 

18UW1000,21UW1000,00UW1000,03UW1000,06

UW1000,09,UW1000,12UW1000,15UW1000,18U
W925,21UW925,00UW925,03UW925,06UW925,0

9,UW925,12UW925,15UW925,18UW850,21UW85

0,00UW850,03UW850,06UW850,09,UW850,12U
W850,15UW850. 

Target (duration 
of fog and dense 

fog) 

 The period between Onset  
and Dissipation of Fog 

hours Duration of fog (Surface visibility <1000 m) Derived Parameters 

(Transmissometers & 

Scatterometer) Installed at 

the Patna. 
The period between Onset and 

Dissipation of Dense Fog 
hours Duration of dense fog (Surface visibility <200 m) 

 

 

 

visibility events (fog and dense fog). The sites of Jay 

Prakash Narayan International (JPNI) Airport, which lies 

in the IGP region, have been taken into consideration for 

the evaluation of the proposed models. There are two 

primary justifications for this particular choice: The initial 

aspect pertains to the ongoing surveillance of data, and the 

presence of Class 1 observatories located at the JPNI 

Airport in Patna and the Automatic Weather Observing 

Station (AWoS) facilitates ongoing surveillance of 

meteorological data sets, encompassing visibility 

measurements that offer ample training data for our 

models. Furthermore, limited visibility leads to notable 

social and economic repercussions in the IGP regions. 

Low-visibility incidents have had a significant negative 

impact on the operational effectiveness of aviation 

services in recent years, causing delays, rescheduling, 

diversion, and cancellations of flights. Hence, the 

provision of precise forecasts about the duration of low-
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visibility events in advance of one or two days can 

effectively contribute to the mitigation and improvement 

of the economic repercussions experienced by the aviation 

sector. 

 

2.2. Datasets 

 

During this research, both ground-based observation 

data from the Automatic Weather Observing System 

(AWoS) and instrumental visibility (Transmissometers 

and scatterometer) and the Upper Air dataset (reanalysis 

dataset of IMDAA) of the study area (for the period 

January 2017 to February 2023) of the Jay Prakash 

Narayan International Airport (JPNI), Patna (25.5947° N, 

85.0908° E) have been taken for the analysis and 

prediction of the duration of low visibility events. The 

designated temporal period for fog prediction is during the 

nocturnal hours at 1500 UTC. The models will commence 

running and generate simulations for the following day. 

These simulations will include predictions regarding the 

duration of low-visibility events (fog and dense fog hours) 

for the next few days. The details of the datasets are 

presented in Table 2. 

 

The surface air temperature, dew point temperature, 

relative humidity, u and v components of wind in             

the synoptic hours (from 1800 UTC of previous days to 

1500 UTC),  daily rainfall, sunshine, and upper               

air sounding data (u and v wind, temperature and              

relative humidity) of the synoptic hours of 1000, 925                

and 850 hPa are used to train and test the proposed models 

with the historical dataset and nearcast the duration of              

fog and dense fog for the next few days at 1500 UTC.               

As per WMO rules, the accuracy of the instruments                   

is checked regularly for the target variables, which are             

the duration of the fog and dense fog as measured by              

the visibility instruments (Transmissometers or 

scatterometer), as well as the surface meteorological 

parameter taken from the Automatic Weather              

Observing System (AWoS) at Patna Airport. The               

IMD's certification standards are 0.1 °C for air 

temperature and 1% for relative humidity, 0.2 m/s                   

for wind speed, and 0.5 mm for precipitation.                           

The different sets of the dataset for the periods November, 

December, January, and February from 2017 to 2023 are 

used as training (80%) and testing (20%) sets to evaluate 

and compare the proposed dynamic weighted ensemble 

models and their base models. In the investigation, 

instances where visibility was documented to be below 

1000 meters were regarded as the length of fog. Similarly, 

if visibility measures below 200 meters, it is categorized 

as dense fog during the hourly observation. The monthly 

distribution of the mean and standard deviation of the 

duration of fog and dense fog for the studied period is 

shown in Fig. 2(a). Fig. 2(b) shows the temporal 

distribution of the duration of fog and dense fog for one of 

the fog seasons of 2022-23 (November-December). 

 

2.3. Methodology 

 

Pearson's correlation coefficients and Spearman‟s 

rank correlation coefficient are employed to identify 

meteorological elements correlated with the duration of 

low-visibility events. The best combinations of three 

representative algorithms are used to nearcast the duration 

of low-visibility events. These are RF, light GBM, and 

SVR. Additionally, the best combination of dynamic-

weighted ensemble and simple ensemble models performs 

well against the benchmarked model. The methodology 

outlined in this study is utilized to estimate the duration of 

low-visibility events (fog and dense fog), i.e., the duration 

between their onset and dissipation. This prediction task is 

explicitly approached as a non-linear regression problem. 

The detailed methodology is presented in Fig. 3. 

 

All the benchmarked models and their proposed 

dynamic weighted ensembles have been developed using 

the Python programming language on the Anaconda 

Platform. The evaluation of the performance of these 

models is conducted by utilizing the performance metrics 

outlined in sub-section 3.4. 

 

2.3.1. Random forest 

 

Since classification and regression trees (CART) use 

machine learning and are created on the same data, they 

are sometimes correlated and statistically dependent, 

making them more varied and uncorrelated. (Breiman, 

2001) recommended growing each bagged tree split using 

random characteristics and observation samples. This is 

called a random forest (RF) based on bagging 

methodology. The detailed procedures of random forest 

models are presented in Fig. 4. RF requires setting the 

number of trees B (forest size), the number of predictors 

m out of p variables (features) for each randomly chosen 

split, and the nmin minimum number of observations per 

node (leaf size). Three main steps comprise the random 

forest algorithm (Hastie, Tibshirani, 2009). 

 

(i) Create B-size training datasets of size N; these 

datasets can be replaced and overlapped randomly. 

 

(ii) Using the following procedures, create a random 

forest tree Tb for each sample dataset until the minimal 

node size nmin is reached. (a) Randomly choose m 

predictors from p variables. (b) Choose the best-split point 

predictors from m. (c) Set certain decision rules to split 

this node into two daughter nodes. 
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Figs. 2(a & b). (a) The Mean and Standard Deviation of the Duration of Fog and Dense Fog across the 

Years (b) The Duration of Fog and Dense Fog for the Season (November to February) 

 

 

 
 

Fig. 3. The detailed procedures (step by step) of the applied methodology (data source, feature selection, 

data acquisition, model training, model optimisation, and model evaluation) in the predictions of 
the duration of fog and dense fog 

 

(a) 

(b) 
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Fig. 4. Schematic of RF Models 

 
(iii) Finally, get the tree ensemble      

 where B is the 

random forest's tree count. 

 

The individual tree's outputs may be averaged to 

predict a response variable at a point x. 

 

   ̂  
 

 
∑       

                                                    (1) 

 

Ensemble learning methods reshape input data to 

create regression trees that best match feature-output 

relationships. This decorrelation of the trees makes 

random forest outputs less variable and more reliable. Its 

efficacy stems from its capability to aggregate the 

predictions of numerous randomized decision trees 

through the process of averaging. Analyzing nonlinear, 

collinear, and interactive data, the algorithm avoids the 

overfitting issue with commendable performance. The 

best hyper parameters of the RF algorithms achieved in 

the local conditions of IGP regions: max_depth: none, 

min_samples_leaf=4, min_samples_split: 10, and 

n_estimators: 150. 

 

2.3.2. Support Vector Regression (SVR) 

 

Support vector machines (SVM) can handle 

continuous and categorical data for regression and 

classification. Kernel-based SVM reduces over-fitting by 

minimizing structural risk with a regularization parameter 

(cortes et al., 1995). A linear Support Vector Regression 

model may be constructed using the following equation, 

often known as regression-based SVM. 

 

     ∑          
       (2) 

 

The function f(x) is used to denote the output of a 

model. The variable xi represents an input variable, while 

the symbol φ denotes a non-linear mapping. The weight 

vector w and the regression function bias b are also 

involved in the model. The loss function is known as the 

ε-insensitive loss, which was specifically designed for            

ε-insensitive Support Vector Regression (ε-SVR)    

(Smola & Scholkopf, 2004). The basic recommendation of 

Support Vector Regression (SVR) is to minimize the 

squared norm of the weight vector, |w|
2
 & the cumulative 

 
 

Fig. 5 Schematic of Light Gradient Boosting Machine (Light 
GBM) Regression 

 

number of permissible errors. To evaluate the deviation of 

training samples outside the ε-insensitive zone, non-

negative slack variables    &   
 (where i = 1, 2,., n) are 

introduced. Therefore, the ε-SVR algorithm aims to 

minimize the following function: 

 

 ∑        
   

 

 
       

         (3) 

 

The following equations apply to the minimization 

function. 

 

                             (4) 

 

   
                      

      (5) 

 

 

The best hyper parameters of the SVR algorithms 

were achieved at C:0.1, Epsilon:0.1, and kernel: linear in 

the studied areas. 

 

2.3.3. Light GBM Regression 

 

A novel machine learning approach is used for more 

accurate residual value modelling and prediction in data 

processing. LightGBM excels in data categorization and 

regression with reduced processing time. A new 

methodology combines Exclusive Feature Bundling (EFB) 

with Gradient-based One-Side Sampling (GOSS) for data 

sampling and classification (Guolin Ke,  et al., 2017). 

Combining these attributes enables efficient and accurate 

data scanning, sampling, grouping, and classification in 

less time than traditional methods. When considering 

memory consumption, processing time, and arithmetic 

performance, LightGBM excels in training speed, 

efficiency, memory utilization, accuracy, parallelism, and 

large-scale data processing. This study evaluates the 

effectiveness of LightGBM regression algorithms in 

predicting the duration of fog and dense fog. Also 

examined gradient boosting's effectiveness in reducing 

variation and improving model accuracy. The best hyper 

parameters attained are: colsample_bytree:1.0, 

learning_rate:0.01, n_estimators:150, num_leaves:31, and 

subsample:0.8.The LightGBM regression process is 

presented in Fig. 5. 
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TABLE 3 

 
Procedures of the proposed weighted ensemble model 

 

Algorithms 

1 Consider a set of independent variables   ̂ as an input (where 
i=1, 2, 3…n) The prediction is the duration of the daily fog 

and dense fog. 

2 Regress independent variables using SVR, Light GBM, & RF 

estimate. 

3 Calculate a weighted average of equation (7) and regress 

values of all three models to ensure 0 ≤      ≥ 1. 

4 Calculate expected values using a weighted ensemble model. 

5 Compare individual forecast errors using a weighted ensemble 

mode 

 

TABLE 4 

 

Mathematical representation of performance metrics 

 

Measure Formula  Description of Variables 

Root Mean 
Squared Error 

(RMSE) 

    

 √∑       ̂ 
 

 

   
 

n is the sample size;       ̂ are 

the actual and predicted 

values of the ith case. 

  ̅ is the arithmetic mean of 

Y, and SSE is the sum of 

squares of the residuals, 

which is equal to ∑      
   

  ̂ 
 . SST is the total sum of 

squares equal to  

Mean 

Absolute 
Error 

(MAE) 

   

 
 

 
∑        ̅  

 

   
 

Coefficient of 
Determination 

(R2) 

     
   

   
 

 

 

 

 

2.3.4. Proposed ensemble models 

 

A weighted ensemble, derived from a model 

averaging ensemble, weighs each member's impact on the 

final forecast based on the model's efficiency. Each model 

has moderate positive weights with a sum of one, 

representing the proportion of trust or projected 

performance. Ensemble forecasts are created by averaging 

individual regression forecasts (Pawlikowski and 

Chorowska, 2020). The mode of member forecasts is used 

to compute class-label projections. Use the 'arguments of 

the maxima' of accumulated probabilities for each class 

label to construct class probability predictions. 

 

2.3.5. Model description 

 

Consider   ̂ as the set of independent variables where 

(i=1, 2, 3……n). The series data set is defined as Y=[y1+ 

y2+….+ yn]
T  

  with    ̂                  
  as the 

prediction obtained from the i
th

 method. 

The basic ensemble is formed by weighting each 

forecast model equally. The weight assigned to each 

model is labelled as wi. 

 

 ̂                       (6) 

 

  ̂            ̂ 
         ̂ 

         ̂ 
    ⁄   (7) 

 

 

 

A speculative weighting ensemble algorithm with 

steps 1–3 is presented in Table 3. 

 

2.4. Evaluation of the Model’s Performances 

 

After allocating 80% of the datasets for training, the 

remaining portion as test data was used to evaluate the 

model's performance. Several assessment measures may 

be used to evaluate performance. This study used three 

capacity measuring measures (MAE, RMSE, and R
2
) to 

evaluate continuous qualities. Measurements were taken 

throughout the testing datasets to ensure the accuracy and 

validity of the proposed prediction models. The 

coefficient of determination, R
2
, represents prediction 

accuracy. More accurate predictions are produced with R
2
 

closer to 1. For continuous dependent variables, MAE and 

RMSE are prominent performance indicators. The 

objective of this study was to provide highly precise 

predictions while acknowledging the potential margin of 

error associated with these estimations. These metrics 

better assess accuracy since they reveal the prediction's 

mistake. The R
2
 is the best way to evaluate error in this 

research; thus, the models were trained on the datasets and 

tested using it. Table 4 shows the adopted measures 

mathematically. 

 

To get a fair and consistent evaluation, performance 

indicators were calculated for all base models, the 

proposed ensemble model, and the weighted ensemble 

model. The study measured the divergence between 

observed and predicted values. As performance metrics 

decline, model accuracy increases. The coefficient of 

determination (R2) indicates prediction accuracy. 

Additionally, MAE and RMSE metrics may evaluate the 

algorithms' prediction abilities.  

 

3. Results and discussion 

 

In this section, we compare the proposed dynamic 

weighted ensemble and ensemble models' performance to 

that of the state-of-the-art best combination of benchmark 

models SVR, RF, and LightGBM for multivariate time 

series prediction of the duration of fog and dense fog for 

random sets of datasets (training (80%) and testing (20%)) 

with forecast horizons of one day and two days. The
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Fig. 6. Normality of the residual value of the predictors of the duration of fog 

 

 
 

 

Fig. 7. The standardized impacts of the input features on the nearcasting of the duration of fog 

 
 

implementation code was written in Python 3.10. The 

proposed machine learning algorithms are developed on a 

laptop with a Windows 11 operating system and an 

Intel(R) Core (TM) i5-1035G1 processor running at 1.00 

GHz and 8 GB of memory. The details about the datasets 

are mentioned in sub-section 3.2. Also, it is crucial to 

verify the normality of the duration of fog and dense fog 

for revising model assumptions and making necessary 

adjustments to improve prediction accuracy. Proper 

feature selection and correlation are essential for 

accelerating prediction and avoiding overfitting by 

minimizing the number of attributes. Additionally, the 

proposed models' performance evaluation includes 

comparing the accuracy of prediction outcomes and the 

competency of the proposed weighted ensemble and the 

base model algorithms. To examine the correlation 

between the duration of fog and dense fog with the 

predictors, model assumptions were examined and 

corrected before the final proposed dynamic weighted 

ensemble model. Fig. 6 preserves the normality of the 

duration of fog residual values. The response variable, the 

duration of fog and the dense fog was not skewed and did 

not require a normality analysis and possible adjustment 

based on its distribution. Results-based adjustments were 

applied to fulfil near-normal distribution assumptions 

(mean = 0). Before picking the optimal model, 

assumptions were examined to ensure accurate findings 

and corrective actions were taken 

 

3.1. Correlation of the Attributes (Input Features) 

 
Various methodologies can be employed to ascertain 

the significance of features. The backward elimination 

method, which is a wrapper approach, utilizes the 

performance of features as a criterion for evaluating and 

selecting influential factors. After that, the model's 

performance is checked using an iterative process. This 

process keeps getting rid of the features that don't work 

well until the model's overall accuracy is within a 

reasonable range. The performance parameter employed 

in this study to assess the effectiveness of features is the p-

value. Features with a p-value < 0.05 are eliminated. Fig. 

7. illustrates the capacity of separate predictors to identify 

the most crucial elements in the prediction process. The 

crucial factors for estimating the duration of fog and dense 

fog include the air temperature at 12 and 15 UTC, as well 
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Figs. 8(a&b). (a) Top significant Pearson correlation coefficients of the model's attributes; (b) Top 

Spearman's rank correlation coefficients of the model's attributes 

 

 

as the temperature at 925 hPa at 06 UTC, which is 

associated with the inversion layers. Additionally, the 

wind at 1000 hPa at 12 UTC is also a significant factor. 

 
As per feature engineering, the most influential 

attributes are evaluated for correlation analysis (Hauke 

and Kossowski, 2011). The association values around 1 

imply a strong and direct association between predictor 

and input features, as recognized by the Pearson 

correlation coefficient. However, correlation levels around 

-1 suggest a significant inverse association. The Pearson 

correlation coefficient of the top features for both direct 

and inverse correlation is shown in Fig. 8. (a). Relative 

humidity of 00 UTC on the surface and 1000 hPa and air 

temperature of 1000 hPa are the most directly influencing 

factors, as well as a temperature of 925 hPa and an air 

temperature of 12 UTC, which are negatively correlated 

with the duration of fog and dense fog. As per the analysis 

of Spearman's rank correlation coefficient, which defines 

the monotonicity of the input features and predictors, the 

relative humidity of 15 and 06 UTC is the most directly 

correlated, and the air temperature of 6 UTC and 12 UTC 

is negatively correlated with the duration of fog and dense 

fog. The top-highest spearmen rank correlation 

coefficients are presented in Fig. 8(b). 

 

Therefore, surface observation along with the upper 

air datasets of 1000, 925, and 850 hPa is important for the 

prediction of the duration of fog and dense fog. But 

particularly the meteorological parameters of the 

surface to 925 are most important for the proposed 

nearcasting model 
 

3.2. Evaluation of Models’ Performance 
 

Following the random allocation of 80% of            

the datasets to train the model, the remaining portion            

was used to   evaluate   the   model's    performance.    The  

(a) 

(b) 
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TABLE 5  

 
Performance metrics of the prediction of the duration of fog and dense fog for a lead time 

 of (a) one day and (b) two days. 

 

(a) 

Proposed Models MAE 

 

RMSE Coefficient of Determination(R2) 

Duration of fog Duration of 

dense fog 

Duration of fog Duration of 

dense fog 

Duration of fog Duration of 

dense fog 

LightGBM 1.81 0.42 2.84 0.93 0.79 0.78 

SVR 2.48 0.36 3.40 0.89 0.76 0.79 

RF 1.93 0.35 3.01 0.88 0.78 0.80 

Ensemble model 1.79 0.29 2.83 0.82 0.83 0.84 

Weighted 

Ensemble Model 
1.54 0.27 2.66 0.81 0.88 0.89 

 

(b) 

Proposed Models MAE RMSE Coefficient of Determination(R2) 

Duration of fog Duration of 

dense fog 

Duration of fog Duration of 

dense fog 

Duration of fog Duration of 

dense fog 

LightGBM 1.54 0.34 2.66 0.86 0.73 0.71 

SVM 1.88 0.31 2.85 0.84 0.70 0.74 

RF 1.61 0.27 2.69 0.81 0.72 0.76 

Ensemble model 1.49 0.27 2.57 0.71 0.75 0.80 

Weighted 

Ensemble Model 
1.48 0.25 2.51 0.69 0.79 0.82 

 

 

 

performance evaluation process can be implemented by 

utilizing several assessment metrics discussed in 

subsection 3.4 (Table 4). These measures were shown to 

be highly valuable in assessing the performance of the 

appraisal process. The metrics were computed on the 

entire set of testing datasets to assess the sufficiency and 

validity of the proposed dynamic weighted ensembles, 

simple ensemble models, and their best combination of 

base benchmarked models. The objective of this study was 

to generate highly precise predictions while 

acknowledging the probable margin of error in these 

estimations. These measurements serve as more reliable 

indicators of accuracy in this context, as they offer 

valuable information regarding the potential margin of 

error in the predictions. Performance indicators were 

calculated for all models to provide a consistent and 

accurate evaluation of the prediction of the duration of 

low visibility events (fog and dense fog). The study 

measured the divergence between observed and predicted 

values. As performance metrics decline, model accuracy 

increases. The Coefficient of Determination (R
2
) indicates 

prediction accuracy. The three algorithms' prediction 

abilities can be compared using MAE and RMSE 

performance metrics. The results of the performance 

evaluation for the discussed models for the                

nearcast duration of fog and dense fog for the lead times 

of a day and two days are presented in Tables 5(a&b), 

respectively. 

 

Grid search is used to find the best model and 

optimal hyper parameter settings. Section 3.3 provides 

more detail about the best hyper parameter combinations 

and the proposed algorithms. Lower values for mean 

absolute error (MAE) and root mean squared error 

(RMSE) are indicative of superior model performance. 

Consequently, among the benchmarked machine learning 

(ML) models, the performance order for predicting fog is 

Light GBM > RF > SVR, and for dense fog, RF > SVR > 

Light GBM, with lead times of one and two days. 

Additionally, the implementation time for the models 

follows the order LightGBM > RF > SVR. In summary, 

the ensemble models demonstrate superior performance 

compared to their base models (presented in Table 5). 

Notably, the dynamic weighted ensemble outperforms 

both the basic ensemble and the benchmarked base 

models. Consequently, the dynamic weighted ensemble 
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model emerges as the top-performing model for predicting 

both fog and dense fog for the next few days. 

 

The coefficient of determination (R
2
) gauges the 

extent to which the variance in the dependent variable can 

be foreseen from the independent variables. A higher R
2
 

value, approaching 1, indicates a better fit for the model. 

In the context of the benchmarked models, performance 

ranks as follows for nearcasting of fog: Light GBM > RF 

> SVR, and for dense fog: RF > SVR > Light GBM. 

Notably, the accuracy of predicting dense fog surpasses 

that of fog in the same time domain. The dynamic 

weighted ensemble model stands out with the highest R
2
 

values (0.88 and 0.89 for lead times of fog and dense fog, 

respectively), signifying its superior ability to elucidate a 

larger proportion of the data's variance compared to other 

models. The dynamic weighted ensemble model works the 

best, as it has the lowest errors (MAE and RMSE) and the 

highest coefficient of determination (R
2
) for both fog and 

dense fog predictions. 

 

The proposed multivariate dynamic weighted 

ensemble models required only 80-90 seconds to train and 

less than 30 seconds to get the results of the validation 

datasets. Also, the proposed models achieve very high 

accuracy (presented in Table 5). From this, we can draw 

some concluding technical observations based on the 

findings. Therefore, we may summarise some technical 

findings based on the preceding results: 

 

(i) It is important to use data-driven methods to quickly 

find the most important features and build multivariate 

models for comparison, since there are many things about 

the duration of low-visibility events (like fog or dense fog) 

that can change how well and accurately they are 

predicted. 

 

(ii) Because of the limitations of most models, it is 

important to present a dynamic weighted ensemble model 

for nearcasting the duration of low-visibility events (fog 

or dense fog).  

 

The final findings demonstrate that the proposed 

model increases prediction accuracy while decreasing 

training time. The model's input and output can also be 

modified to meet changing needs. 

 

4. Conclusions 

 
This research endeavors to forecast the most 

challenging periods of fog and dense fog in terms of 

calendar days. The practical implications extend beyond 

aviation services, impacting areas such as tourism, 

agriculture, transportation, maritime, and rail services. 

The research uses machine learning (ML) models to find 

the best combinations of algorithms and how to tune their 

hyper parameters based on the knowledge of forecasters 

and local conditions of the fog-prone Indo-Gangetic Plain 

(IGP) regions about the things that cause low visibility 

events, such as the onset and dissipation of the most 

noticeable radiation, advection fog, and its combination. 

The proposed dynamic weighted ensemble models utilize 

the potential of the three different best combinations of the 

ML models: random forest (RF) for bagging, light GBM 

for boosting, and support vector regression (SVR) for the 

robust and most generalizable output. The real database 

for the research is sourced from historical observations of 

Surface Meteorological Instruments (AWoS) at synoptic 

hours (03 hours), daily observations of rainfall and 

sunshine from Class I Observatories, duration of low 

visibility events data derived from Transmissometers and 

scatterometer visibility readings, and upper air data from 

the IMDAA reanalysis dataset. The selection of pertinent 

explanatory variables for the models employs statistical 

measures such as the Pearson correlation coefficient and 

Spearman's rank correlation coefficient. Comparing the 

prediction accuracy of the benchmarked models for the 

prediction of fog in a calendar day, Light GBM                     

has superior performances compared to RF and SVR,            

and for the duration of dense fog, RF has superior 

performances compared to SVR and Light GBM in            

terms of RMSE, MSE, and R
2
. The proposed                

dynamic weighted ensemble model outperforms a              

simple ensemble, and its benchmarked models 

demonstrate the effectiveness of the models across 

different locations. The models exhibit significant 

variability in their performance, with some excelling 

while others struggle to predict the duration of low-

visibility events. Ensemble models prove valuable            

in striking a balance, delivering the best and                         

most balanced results across different datasets, notably 

surpassing the performance of individual models.                

While the study achieves promising results using              

training and testing of the real-time observational             

datasets and the IMDAA Reanalysis datasets, in practical 

applications, the trained models perform well on the real-

time observation data of the upper air data. Additionally, 

for the improved performance of the proposed models and 

the timing of the low-visibility events in the 

implementation of the proposed models, the earlier 

proposed study (Shankar and Sahana, 2023b) sorted out 

the most important issues of the location-specific forecast 

of low-visibility events. 

 
Data availability 

 
The three hourly(synoptic) surface meteorological 

datasets (observed from AWoS) of Patna Airport, Class-I 

Observatory Data of Patna, taken from the National Data 

Centre, Climate Research Station of the India 
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Meteorological Department, where weather data of the 

India Meteorological Department is available through the 

portal https://dsp.imdpune.gov.in/, Also, the Upper Air 

IMDAA dataset is accessible from its portal, https://rds. 

ncmrwf.gov.in/.  It is noted that these portals can be 

accessed publicly. Also, data can be shared after the 

request. 
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