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LightGBM (0.79), RF (0.78) 3 SVR (0.76) & o #H a5k gl 37T IE HEATA HlgU-9avl sa1-
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&I {@ifhd T &l

ABSTRACT. The prediction of the duration of the occurrence of low-visibility events in a calendar day is a
difficult process because of the complex and chaotic mechanisms of the onset and dissipation of the low-visibility events.
However, it is most useful for the operation of airport services (scheduling of aircraft, optimal operations of the airports)
and the planning of any activities (travel, tourism, agriculture, etc.). This research tries to build the best dynamic
weighted ensemble of the best combination of base machine learning (ML) models (Light Gradient Boosting Machine
(Light GBM), Random Forest (RF), and Support Vector Regression (SVR)) to accurately nearcast the duration of low
visibility events (fog (surface visibility <1000 m) and dense fog (surface visibility <200 m) for a calendar day based on
the initial conditions of 1500 UTC (Universal Time Co-Ordinate). Conditions such as surface meteorological parameters
(air temperature, dew point temperature, relative humidity, wind (every 3 hours), rainfall (daily), and sunshine (daily))
and upper air meteorological parameters (wind, temperature, and relative humidity of 1000, 925, and 850 hPa (every 3
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hours)) were taken into account to find the best set of explanatory factors for the accurate nearcasting of the duration of
the low visibility events. The Pearson correlation coefficient and Spearman's rank correlation coefficient were used to
choose the final set of model explanatory variables. The datasets were thoroughly examined using supervised ML
algorithms at the various stages of training, testing, modelling, and cross validation. All the best combination models'
accuracy was evaluated and compared using performance measures, namely MAE (mean absolute error), RMSE (root
mean square error), and R? (R squared error). Based on the coefficient of determination (R?), it can be observed that the
suggested dynamic weighted ensemble model exhibits the best level of prediction accuracy, specifically 0.89 and 0.88 for
the duration of fog and dense fog for a given lead time of a day. This surpass the accuracy of LightGBM (0.79), RF
(0.78), and SVR (0.76) for the prediction of the duration of fog. Therefore, this study highlights the potential of ma-chine
learning in facilitating the advancement of automation in airport scheduling and optimizing the operations of airports,

specifically in the fog-prone Indo-Gangetic Plains (IGP).

Key words — Duration of low-visibility events, Weighted ensemble, Machine learning, Nearcasting, Airport

operations.

1. Introduction

Fog is a meteorological phenomenon characterized
by a boundary layer containing a significant accumulation
of water droplets or ice crystals; as a consequence,
visibility is diminished to a distance of less than 1
kilometer (World Meteorological Organization 2019). Fog
has been the subject of an abundance of research, which
has utilized a wide range of methodologies and
perspectives (Gultepe et al., 2007; Long et al., 2021;
Lakra and Avishek, 2022; Bari et al., 2023; Shankar and
Sahana, 2023a). The effects of fog on humans and the
local economy have been the subject of an abundance of
research (Pérez-Diaz et al., 2017; Peng et al., 2018; Gu et
al., 2019). Extensive fog considerably hinders the
movement of sea, land, rail, and air transportation, leading
to considerable economic consequences (Belaroussi and
Gruyer, 2014; Gultepe et al.,, 2017; Wu et al., 2018;
Kulkarni et al., 2019; Chandu et al., 2022; Shankar and
Giri, 2024). (Tyagi et al., 2017, 2020) unveiled worrisome
patterns of increased fog prevalence and land, and air
pollution in the Indo-Gangetic Plain (IGP) from
November to February. Concerns have been expressed
regarding the socioeconomic ramifications of these
environmental changes in light of these findings (Gautam
et al., 2007). (Hosea, 2019; Mitsokapas et al., 2021) posit
that the occurrence of dense fog at airports causes aircraft
to be diverted, delayed, or cancelled, thereby causing
passenger inconvenience and financial detriment to
airlines (Kulkarni et al., 2019). Severe visibility
conditions, specifically those falling below 1000 meters,
impede the operations of major airports situated in a
specific geographic region (Hosea 2019). Diminished
visibility can have a substantial detrimental effect on air
navigation. In 2017, a dense fog episode in India resulted
in the tragic loss of 11,000 lives due to road accidents, and
21 flights were disrupted at Patna airport in December
2017, causing substantial economic losses (Shankar and
Sahana, 2023b). The expenses related to fog events and
the duration of fog (the period between onset and
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dissipation) are currently as expensive as the occurrence
of thunderstorms (Gultepe et al., 2007). Slower operations
at airports during the duration of the fog cost several
thousand dollars every day (Dietz et al., 2019). So, for
airports to run as smoothly and efficiently as possible,
they need better nearcasting (with a one- to two-day
advance) for the duration of fog events, mostly so that
airlines and operators can plan their schedules of flight.
The advancement of observation and monitoring
platforms and networks improves data quality as well as
the historical database (lzett et al., 2019). Al/ML
(artificial  intelligence/machine  learning) analytical
capabilities may improve next-generation fog-episode
predictions based on historical datasets. This strategy can
improve decision support systems for low-visibility events
and improve the decision-making process. The nearcasting
of the duration of fog is a huge challenge, as it is
associated with complex atmospheric processes. However,
the forecasters’ understanding of the local conditions,
ability to extract the desired input, and understanding of
the algorithms improve the data-driven nearcasting of the
duration of low-visibility events (fog and dense fog). The
proposed nearcasting model, which is a dynamic weighted
ensemble of the best combination of the base ML models
(SVR, RF, and light GBM), predicts the durations of the
low-visibility events (fog and dense fog) of a calendar day
at the initial conditions of 1500 UTC. The surface
meteorological datasets of Patna Airport for the synoptic
hours (03 hourly) of the parameters Temperature, Dew
Point Temperature, Relative Humidity, and u and v
components of winds and daily rainfall and sunshine and
corresponding upper air data derived from the Indian
Monsoon Data Assimilation and Analysis reanalysis
(IMDAA) dataset (Indirarani et al., 2021) and the target
duration of low visibility events ( fog (visibility <1000 m)
and dense fog (visibility <200 m)) derived from the
instrumental visibility dataset. The IMDAA datasets and
observed datasets of the Patna airport are representative of
the fog-prone IGP regions. Therefore, the proposed
techniques may be used at any location in the IGP regions
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without any further changes in their algorithms or data
ingestion. The novelty of the research article is outlined as

(i) This study investigates the optimal combinations of
the best base ML models that are well-suited for the
conditions of Indo-Gangetic Plains (IGP) regions.
Additionally, it proposes a dynamic weighted ensemble
approach that exhibits superior generalization ability and
default sample recognition ability while also preserving
the robustness and interpretability of the model's results.

(ii) Ensemble modelling reduces bias in prediction
results by creating sub-datasets with varying sample
imbalance ratios and training base models with targeted
prediction abilities for specific sample classes. Integration
leads to improvements in  both  base-model
complementarity and overall performance.

(iii) It is planned to make a dynamic weighted ensemble
method that is more flexible and has a changing balancing
effect. The ensemble weight is changed for each sample
that needs to be predicted based on the different prediction
results of each base model and how well they recognized
specific class samples in the validation stage. This makes
setting the weights even more flexible.

(iv) Therefore, this research suggests an alternate
forecasting technique for the most essential nearcasting of
the duration of low visibility in a calendar day.

The subsequent sections of this work are structured
in the following manner: Section 2 discusses the previous
related works and the following: Section 3 of the paper
presents the observed dataset and the architecture of the
proposed ML dynamic weighted ensemble model. Section
4 contains a comprehensive evaluation and analysis of the
assessment outcomes, along with a detailed discourse on
these findings. The findings and implications of our study
are presented in Section 5.

1.1. Related work

Two kinds of current state-of-the-art visibility
prediction algorithms are summarized in Table 1. The first
category includes creating NWP models that employ fluid
mechanics and thermodynamic equations to forecast
weather and its progression. To forecast the onset and
dissipation of fog, i.e., the duration of fog, meteorologists
have created numerous NWP models. For instance,
(Bergot et al., 2005) created a one-dimensional numerical
model to anticipate reduced visibility near Charles de
Gaulle Airport. To anticipate reduced visibility in coastal
zones, (Mdller et al., 2010; Dhangar et al., 2021) and
(Parde et al., 2022) used three-dimensional numerical
models. Moreover, mesoscale models like WRF models
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TABLE1

Various state-of-the-art methods for the prediction of low visibility.

Predicted
Categories  Author Year Method Study Area  Time
Interval
(Bergot One dimensional . 30 min to
etal, 2005) 20%° COBEL model ~ APt g
, . . Complex
(Muller Three dimension .
NWP  etal., 2010) 2010 model topt(;?rr:i[r)]hlc 03 hours
Based (Melo 2023 One Dimension  North East 06 hours
etal., 2023) PAFOG model Brazil
(Parde .
etal., 2022) 2022 WRF model  IGP regions 03 hours
(Koziara,
M., Robert, . .
J, 1982 Multl[_)le gy Marine Area 24 hours
regression model
Thompson
Meteoro- 1983)
logical (Miaoetal., . Traffic 01to04
Feature 2020) 2020 Deep Learning Freeway  hours
Based (Shankar and
Sahana 2023 rE]r;Serlr:?r:e Airport Orl]gﬁrtsm
2023b) 9
(Zhai et al., . .
2023) 2023 Ensemble learning Freeway 15 Min

replicate fog generation, dissipation, and development
(Roméan-Cascon et al., 2012, 2016; Steeneveld et al.,
2015; Ryerson and Hacker 2018; Pithani et al., 2019;
Pahlavan et al., 2021). While these models may mimic fog
generation and progression, they mostly forecast visibility
in mesoscale places like airports and coastal areas. Certain
geographical places, such as airports and coastal regions,
exhibit a wide range of microclimatic conditions that vary
across both temporal and spatial dimensions. It is
imperative to incorporate this information into models,
which therefore leads to an escalation in the expenses
associated with state-of-the-art monitoring devices.
Numerical weather prediction (NWP) models need the use
of precise data and robust computational resources,
rendering them challenging for accurately forecasting
short-term visibility under location-specific
circumstances.

A different way to predict visibility is to build
prediction models by looking at the relationship between
fog formation and certain weather conditions, such as
wind speed, humidity, air temperature, barometric
pressure, rainfall, etc. Fog formation occurs when the
temperature approaches the dew point and there are
enough condensation nodules in the air (Pulugurtha et al.,
2019). These weather elements are fed into visibility
prediction statistical models (Roman-Cascon et al., 2016;
Cornejo-Bueno et al., 2021). Most statistical models are
simpler than NWP models. While most fog forecasting
research focuses on the sea (Gultepe et al., 2017; Han et
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Fig. 1. The geographical location of Jay Prakash Narayan International Airport Patna (a) India (b)State of
Bihar, India (c) Capital Cities of Patna and its Airport

al., 2021) or airports (Teixeira and Miranda 2001; Dutta
and Chaudhuri 2015; Cornejo-Bueno et al., 2017; Shankar
and Sahana, 2023b), statistical models can anticipate
fog events hours in advance, enabling proactive
management measures. Statistical approaches have
limited prediction capability; hence, machine learning
methods are being used to create models that can
handle non-linear  connections. Many  machine-
learning  approaches have been studied, such
as probabilistic neural networks, multilayer perceptron’s,
Bayesian decision networks, ordinal classification,
and support vector machines (Guijo-Rubio et al.,
2018; Ortega et al., 2020; Bartok et al., 2022). These
strategies train  base learners using historical
meteorological data and develop a correlation between
visibility and meteorological parameters. Limited
information in training data may restrict the selection of
the best learner, resulting in lower prediction capabilities.
Ensemble learning will be used to forecast visibility to
compensate for the errors of the previous approaches.
Multiple researchers tackle the same issue in this machine
learning paradigm (Zhu et al., 2018; Shahhosseini et al.,
2022; Shankar and Sahana 2023b). Ensemble learning
typically outperforms base learners in generalization
ability. Ensemble learning techniques may improve
prediction accuracy and computational time and prevent
overfitting in theoretical and practical investigations
(Huang et al., 2018; Shahhosseini et al., 2022; Shankar
and Sahana 2023b). Ensemble learning offers efficient
computation and the capacity to handle the complicated
non-linear ~ connection  between  visibility  and
meteorological factors. Most of these studies try to predict
fog (visibility<1000) or no fog (visibility>1000 m),
dissipation of fog as a classification issue, and visibility as
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a regression problem. None of these studies tries to predict
the duration of fog in calendar days, which includes the
onset and dissipation of low-visibility events in advance.
Also, most of these studies work well in a matter of a few
hours (Nowcasting). Previous studies have had lots of
issues with estimating weakness, as mentioned (Vorndran
et al., 2022), and none of them attempted to forecast the
duration of the fog. The accurate prediction of it directly
serves the needs of the end users. This study tries to
predict and suggests dynamic weighted ensemble models
predict the duration of fog and dense fog with practical
implementation in the optimal operations of the airports in
a lead time of a few days (nearcasting) with satisfactory
operations. Pearson correlation coefficients
and Spearman’s rank correlation coefficients identify the
best meteorological variables linked to the duration of
low-visibility events. Next, the dynamic weighted and
simple ML algorithms (RF, Light GBM, and SVR) create
short-term prediction models (nearcast model). The
prediction performance and computational costs of the
proposed dynamic weighted ensemble models are
compared to those of baseline benchmarked models. Also,
the proposed approach is tested for the different sets of
data from the representative station of the IGP regions
(Patna Airport).

2. Data and methodology

2.1. Study area

The specific sites within the Indo-Gangetic Plain
(IGP) regions, which are sandwiched between the

southern Plateau and the Northern Himalaya (as shown in
Fig. 1.), are the focus of estimating the duration of low-
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TABLE 2

The details of the input datasets and targets used in the prediction of the duration of fog and dense fog specific to the conditions
of IGP regions (representative station: Patna Airport)

Type Input/Target Variables Unit Indicator Source
Air Temperature oC 18DB,21DB,00DB,03DB,06DB,09,DB,12DB,15D
(Synoptic Hours i.e 03 hourly) B
Dew Point Temperature °C  18DP,21DP,00DP,03DP,06DP,09,DP,12DP, 15DP
(Synoptic Hours i.e 03 hourly)
; o Automatic Weather
Relative H t
elative Humidity %  18RH,21RH,00RH,03RH,06RH,09RH,12RH,15RH Observing Station (AWoS),
(Synoptic Hours i.e 03 hourly)
Surface - IMD
Meteorological U wind knots 18UWIND,21UWIND,00 UWIND,03UWIND,06
Data (Synoptic Hours i.e 03 hourly) UWIND,09UWIND,12UWIND,15UWIND
Instrumental .
( ) V wind hraiis 18VWIND,21VWIND,00 VWIND,03VWIND,06
(Synoptic Hours i.e 03 hourly) VWIND,09VWIND,12VWIND,15VWIND
Rainfall In mm Rainfall Class | Observatory at
(Daily) Patna (IMD)
Sunshine
H hi
(Daily) ours Sunshine
18T1000,21T1000,00T1000,03T1000,06T1000,09,
Temperature T1000,12T1000,15T1000,18T925,21T925,00T925,
(03 hourly) of 1000,925 and °C 03T925,06T925,09,T925,12T925,15T925,18T850,2
850 hPa 17850,00T850,03T850,06T850,09,T850,12T850,
reanalysis 15T850.
18RH1000,21RH1000,00RH1000,03RH1000,06RH
Relative humidity( 03 hourly) 1000,09,RH1000,12RH1000,15RH1000,18RH925,2
of 1000.925 atnyd 850 hPay % 1RH925,00RH925,03RH925,06RH925,09,RH925,1
! 2RH925,15RH925,18RH850,21RH850,00RH850,0
U Al 3RH850,06RH850,09,RH850,12RH850,15RH850.
er Air . -
Sour?(?ing Data 18VW1000,21VW1000,00VW1000,03VW1000,06 Derived point Data from
(IMDAA) VW1000,09,VW1000,12VW1000,15VW1000,18V IMDAA Gridded dataset
U Wind ( 03 hourly) of Knots W925,21VW925,00VW925,03VW925,06VW925,0
1000,925 and 850 hPa 9,VW925,12VW925,15VW925,18VW850,21VVW85
0,00VvW850,03VvW850,06\VW850,09,VW85
,12VVW850,15VW850.
18UW1000,21UW1000,00UW1000,03UW1000,06
Uw1000,09,UW1000,12UW1000,15UW1000,18U
V Wind( 03 hourly) of . W925,21UW925,00UW925,03UW925,06UW925,0
1000,925 and 850 hPa 9,UW925,12UW925,15UW925,18UW850,21UW85
0,00UW850,03UW850,06UW850,09,UW850,12U
W850,15UW850.
. The period between Onset ; icihili Derived Parameters
Tfa;get (dgrda“on and Dissipation of Fog hours Duration of fog (Surface visibility <1000 m) (Transmissometers &
orfogan ense The period between Onset and ) R Scatterometer) Installed at
fog) hours  Duration of dense fog (Surface visibility <200 m) the Patna.

Dissipation of Dense Fog

visibility events (fog and dense fog). The sites of Jay
Prakash Narayan International (JPNI) Airport, which lies
in the IGP region, have been taken into consideration for
the evaluation of the proposed models. There are two
primary justifications for this particular choice: The initial
aspect pertains to the ongoing surveillance of data, and the
presence of Class 1 observatories located at the JPNI
Airport in Patna and the Automatic Weather Observing
Station (AWoS) facilitates ongoing surveillance of
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meteorological data sets, encompassing visibility
measurements that offer ample training data for our
models. Furthermore, limited visibility leads to notable
social and economic repercussions in the IGP regions.
Low-visibility incidents have had a significant negative
impact on the operational effectiveness of aviation
services in recent years, causing delays, rescheduling,
diversion, and cancellations of flights. Hence, the
provision of precise forecasts about the duration of low-
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visibility events in advance of one or two days can
effectively contribute to the mitigation and improvement
of the economic repercussions experienced by the aviation
sector.

2.2. Datasets

During this research, both ground-based observation
data from the Automatic Weather Observing System
(AWO0S) and instrumental visibility (Transmissometers
and scatterometer) and the Upper Air dataset (reanalysis
dataset of IMDAA) of the study area (for the period
January 2017 to February 2023) of the Jay Prakash
Narayan International Airport (JPNI), Patna (25.5947° N,
85.0908° E) have been taken for the analysis and
prediction of the duration of low visibility events. The
designated temporal period for fog prediction is during the
nocturnal hours at 1500 UTC. The models will commence
running and generate simulations for the following day.
These simulations will include predictions regarding the
duration of low-visibility events (fog and dense fog hours)
for the next few days. The details of the datasets are
presented in Table 2.

The surface air temperature, dew point temperature,
relative humidity, u and v components of wind in
the synoptic hours (from 1800 UTC of previous days to
1500 UTC), daily rainfall, sunshine, and upper
air sounding data (u and v wind, temperature and
relative humidity) of the synoptic hours of 1000, 925
and 850 hPa are used to train and test the proposed models
with the historical dataset and nearcast the duration of
fog and dense fog for the next few days at 1500 UTC.
As per WMO rules, the accuracy of the instruments
is checked regularly for the target variables, which are
the duration of the fog and dense fog as measured by
the  visibility instruments (Transmissometers or
scatterometer), as well as the surface meteorological

parameter taken from the Automatic Weather
Observing System (AWoS) at Pathna Airport. The
IMD's certification standards are 0.1 °C for air

temperature and 1% for relative humidity, 0.2 m/s
for wind speed, and 0.5 mm for precipitation.
The different sets of the dataset for the periods November,
December, January, and February from 2017 to 2023 are
used as training (80%) and testing (20%) sets to evaluate
and compare the proposed dynamic weighted ensemble
models and their base models. In the investigation,
instances where visibility was documented to be below
1000 meters were regarded as the length of fog. Similarly,
if visibility measures below 200 meters, it is categorized
as dense fog during the hourly observation. The monthly
distribution of the mean and standard deviation of the
duration of fog and dense fog for the studied period is
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shown in Fig. 2(a). Fig. 2(b) shows the temporal
distribution of the duration of fog and dense fog for one of
the fog seasons of 2022-23 (November-December).

2.3. Methodology

Pearson's correlation coefficients and Spearman’s
rank correlation coefficient are employed to identify
meteorological elements correlated with the duration of
low-visibility events. The best combinations of three
representative algorithms are used to nearcast the duration
of low-visibility events. These are RF, light GBM, and
SVR. Additionally, the best combination of dynamic-
weighted ensemble and simple ensemble models performs
well against the benchmarked model. The methodology
outlined in this study is utilized to estimate the duration of
low-visibility events (fog and dense fog), i.e., the duration
between their onset and dissipation. This prediction task is
explicitly approached as a non-linear regression problem.
The detailed methodology is presented in Fig. 3.

All the benchmarked models and their proposed
dynamic weighted ensembles have been developed using
the Python programming language on the Anaconda
Platform. The evaluation of the performance of these
models is conducted by utilizing the performance metrics
outlined in sub-section 3.4.

2.3.1. Random forest

Since classification and regression trees (CART) use
machine learning and are created on the same data, they
are sometimes correlated and statistically dependent,
making them more varied and uncorrelated. (Breiman,
2001) recommended growing each bagged tree split using
random characteristics and observation samples. This is
called a random forest (RF) based on bagging
methodology. The detailed procedures of random forest
models are presented in Fig. 4. RF requires setting the
number of trees B (forest size), the number of predictors
m out of p variables (features) for each randomly chosen
split, and the n.,;, minimum number of observations per
node (leaf size). Three main steps comprise the random
forest algorithm (Hastie, Tibshirani, 2009).

(i) Create B-size training datasets of size N; these
datasets can be replaced and overlapped randomly.

(if) Using the following procedures, create a random
forest tree Ty, for each sample dataset until the minimal
node size nmin is reached. (@) Randomly choose m
predictors from p variables. (b) Choose the best-split point
predictors from m. (c) Set certain decision rules to split
this node into two daughter nodes.
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Figs. 2(a & b). (a) The Mean and Standard Deviation of the Duration of Fog and Dense Fog across the
Years (b) The Duration of Fog and Dense Fog for the Season (November to February)
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Fig. 4. Schematic of RF Models

(iii) Finally, get the tree ensemble {T,}where B is the
random forest's tree count.

The individual tree's outputs may be averaged to
predict a response variable at a point x.

far = 3251 Ty (%) (1)

Ensemble learning methods reshape input data to
create regression trees that best match feature-output
relationships. This decorrelation of the trees makes
random forest outputs less variable and more reliable. Its
efficacy stems from its capability to aggregate the
predictions of numerous randomized decision trees
through the process of averaging. Analyzing nonlinear,
collinear, and interactive data, the algorithm avoids the
overfitting issue with commendable performance. The
best hyper parameters of the RF algorithms achieved in
the local conditions of IGP regions: max_depth: none,

min_samples_leaf=4,  min_samples_split: 10, and
n_estimators: 150.

2.3.2. Support Vector Regression (SVR)

Support vector machines (SVM) can handle

continuous and categorical data for regression and
classification. Kernel-based SVM reduces over-fitting by
minimizing structural risk with a regularization parameter
(cortes et al., 1995). A linear Support Vector Regression
model may be constructed using the following equation,
often known as regression-based SVM.
f@) =Xl ()w +b ¥
The function f(x) is used to denote the output of a
model. The variable x; represents an input variable, while
the symbol ¢ denotes a non-linear mapping. The weight
vector w and the regression function bias b are also
involved in the model. The loss function is known as the
e-insensitive loss, which was specifically designed for
e-insensitive  Support Vector Regression (e-SVR)
(Smola & Scholkopf, 2004). The basic recommendation of
Support Vector Regression (SVR) is to minimize the
squared norm of the weight vector, |w|* & the cumulative
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Fig. 5 Schematic of Light Gradient Boosting Machine (Light
GBM) Regression

number of permissible errors. To evaluate the deviation of
training samples outside the e-insensitive zone, non-
negative slack variables §; & &; (where i = 1, 2,., n) are
introduced. Therefore, the &-SVR algorithm aims to
minimize the following function:

CIN-a G + &) + 51wl @3)
The following equations apply to the minimization
function.

g =0andt, < f(x,)+€ +&, 4)

®)

g, =0andt, = f(x,)—€—-¢,

The best hyper parameters of the SVR algorithms
were achieved at C:0.1, Epsilon:0.1, and kernel: linear in
the studied areas.

2.3.3. Light GBM Regression

A novel machine learning approach is used for more
accurate residual value modelling and prediction in data
processing. LightGBM excels in data categorization and
regression with reduced processing time. A new
methodology combines Exclusive Feature Bundling (EFB)
with Gradient-based One-Side Sampling (GOSS) for data
sampling and classification (Guolin Ke, et al., 2017).
Combining these attributes enables efficient and accurate
data scanning, sampling, grouping, and classification in
less time than traditional methods. When considering
memory consumption, processing time, and arithmetic
performance, LightGBM excels in training speed,
efficiency, memory utilization, accuracy, parallelism, and
large-scale data processing. This study evaluates the
effectiveness of LightGBM regression algorithms in
predicting the duration of fog and dense fog. Also
examined gradient boosting's effectiveness in reducing
variation and improving model accuracy. The best hyper
parameters attained are: colsample_bytree:1.0,
learning_rate:0.01, n_estimators:150, num_leaves:31, and
subsample:0.8.The LightGBM regression process is
presented in Fig. 5.
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TABLE3

Procedures of the proposed weighted ensemble model

Algorithms

1 Consider a set of independent variables ¥, as an input (where
i=1, 2, 3...n) The prediction is the duration of the daily fog
and dense fog.

2 Regress independent variables using SVR, Light GBM, & RF
estimate.

3 Calculate a weighted average of equation (7) and regress
values of all three models to ensure 0 <w; > 1.

Calculate expected values using a weighted ensemble model.

Compare individual forecast errors using a weighted ensemble
mode

TABLE 4

Mathematical representation of performance metrics

Measure Formula Description of Variables
Root Mean  RMSE n is the sample size; y;, ¥, are
SR Sy @ .\, the actual and predicted
(RMSE) = Z 0= )
i=1 values of the ith case.
Mean MAE ¥, is the arithmetic mean of
Absolute I ald _ .
Error zﬁzml(yi_yl)l Y, and SSE is the sum of
(MAE) squares of the residuals,
Coefficient of Rz o1 _SSE which is equal to XL (y; —
Determination - SST

®) #,)2. SST is the total sum of
squares equal to

2.3.4. Proposed ensemble models

A weighted ensemble, derived from a model
averaging ensemble, weighs each member's impact on the
final forecast based on the model's efficiency. Each model
has moderate positive weights with a sum of one,
representing the proportion of trust or projected
performance. Ensemble forecasts are created by averaging
individual regression forecasts (Pawlikowski and
Chorowska, 2020). The mode of member forecasts is used
to compute class-label projections. Use the ‘arguments of
the maxima' of accumulated probabilities for each class
label to construct class probability predictions.

2.3.5. Model description

Consider ¥, as the set of independent variables where
(i=1,2,3...... n). The series data set is defined as Y=[y;+
y2. . yI'  with 3 [Y%i + Y2+ +yni]" as the
prediction obtained from the i"" method.
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The basic ensemble is formed by weighting each
forecast model equally. The weight assigned to each
model is labelled as w;.

PO =[yr+y, +-+wl" (6)

O =wo +wy 5D +wy 9.2 +ws 9,2/3 (7)

A speculative weighting ensemble algorithm with
steps 1-3 is presented in Table 3.

2.4. Evaluation of the Model’s Performances

After allocating 80% of the datasets for training, the
remaining portion as test data was used to evaluate the
model's performance. Several assessment measures may
be used to evaluate performance. This study used three
capacity measuring measures (MAE, RMSE, and R?) to
evaluate continuous qualities. Measurements were taken
throughout the testing datasets to ensure the accuracy and
validity of the proposed prediction models. The
coefficient of determination, R? represents prediction
accuracy. More accurate predictions are produced with R?
closer to 1. For continuous dependent variables, MAE and
RMSE are prominent performance indicators. The
objective of this study was to provide highly precise
predictions while acknowledging the potential margin of
error associated with these estimations. These metrics
better assess accuracy since they reveal the prediction’s
mistake. The R? is the best way to evaluate error in this
research; thus, the models were trained on the datasets and
tested using it. Table 4 shows the adopted measures
mathematically.

To get a fair and consistent evaluation, performance
indicators were calculated for all base models, the
proposed ensemble model, and the weighted ensemble
model. The study measured the divergence between
observed and predicted values. As performance metrics
decline, model accuracy increases. The coefficient of
determination (R2) indicates prediction accuracy.
Additionally, MAE and RMSE metrics may evaluate the
algorithms' prediction abilities.

3. Results and discussion

In this section, we compare the proposed dynamic
weighted ensemble and ensemble models' performance to
that of the state-of-the-art best combination of benchmark
models SVR, RF, and LightGBM for multivariate time
series prediction of the duration of fog and dense fog for
random sets of datasets (training (80%) and testing (20%))
with forecast horizons of one day and two days. The
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Histogram and KDE of the Standardised Duration of Fog
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Fig. 6. Normality of the residual value of the predictors of the duration of fog
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Fig. 7. The standardized impacts of the input features on the nearcasting of the duration of fog

implementation code was written in Python 3.10. The
proposed machine learning algorithms are developed on a
laptop with a Windows 11 operating system and an
Intel(R) Core (TM) i5-1035G1 processor running at 1.00
GHz and 8 GB of memory. The details about the datasets
are mentioned in sub-section 3.2. Also, it is crucial to
verify the normality of the duration of fog and dense fog
for revising model assumptions and making necessary
adjustments to improve prediction accuracy. Proper
feature selection and correlation are essential for
accelerating prediction and avoiding overfitting by
minimizing the number of attributes. Additionally, the
proposed models' performance evaluation includes
comparing the accuracy of prediction outcomes and the
competency of the proposed weighted ensemble and the
base model algorithms. To examine the correlation
between the duration of fog and dense fog with the
predictors, model assumptions were examined and
corrected before the final proposed dynamic weighted
ensemble model. Fig. 6 preserves the normality of the
duration of fog residual values. The response variable, the
duration of fog and the dense fog was not skewed and did
not require a normality analysis and possible adjustment
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based on its distribution. Results-based adjustments were
applied to fulfil near-normal distribution assumptions
(mean 0). Before picking the optimal model,
assumptions were examined to ensure accurate findings
and corrective actions were taken

3.1. Correlation of the Attributes (Input Features)

Various methodologies can be employed to ascertain
the significance of features. The backward elimination
method, which is a wrapper approach, utilizes the
performance of features as a criterion for evaluating and
selecting influential factors. After that, the model's
performance is checked using an iterative process. This
process keeps getting rid of the features that don't work
well until the model's overall accuracy is within a
reasonable range. The performance parameter employed
in this study to assess the effectiveness of features is the p-
value. Features with a p-value < 0.05 are eliminated. Fig.
7. illustrates the capacity of separate predictors to identify
the most crucial elements in the prediction process. The
crucial factors for estimating the duration of fog and dense
fog include the air temperature at 12 and 15 UTC, as well
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Figs. 8(a&b). (a) Top significant Pearson correlation coefficients of the model's attributes; (b) Top
Spearman's rank correlation coefficients of the model's attributes

as the temperature at 925 hPa at 06 UTC, which is
associated with the inversion layers. Additionally, the
wind at 1000 hPa at 12 UTC is also a significant factor.

As per feature engineering, the most influential
attributes are evaluated for correlation analysis (Hauke
and Kossowski, 2011). The association values around 1
imply a strong and direct association between predictor
and input features, as recognized by the Pearson
correlation coefficient. However, correlation levels around
-1 suggest a significant inverse association. The Pearson
correlation coefficient of the top features for both direct
and inverse correlation is shown in Fig. 8. (a). Relative
humidity of 00 UTC on the surface and 1000 hPa and air
temperature of 1000 hPa are the most directly influencing
factors, as well as a temperature of 925 hPa and an air
temperature of 12 UTC, which are negatively correlated
with the duration of fog and dense fog. As per the analysis
of Spearman's rank correlation coefficient, which defines
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the monotonicity of the input features and predictors, the
relative humidity of 15 and 06 UTC is the most directly
correlated, and the air temperature of 6 UTC and 12 UTC
is negatively correlated with the duration of fog and dense
fog. The top-highest spearmen rank  correlation
coefficients are presented in Fig. 8(b).

Therefore, surface observation along with the upper
air datasets of 1000, 925, and 850 hPa is important for the
prediction of the duration of fog and dense fog. But
particularly the meteorological parameters of the
surface to 925 are most important for the proposed
nearcasting model

3.2. Evaluation of Models’ Performance
Following the random allocation of 80% of

the datasets to train the model, the remaining portion
was used to evaluate the model's performance. The
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TABLES5

Performance metrics of the prediction of the duration of fog and dense fog for a lead time
of (a) one day and (b) two days.

(@
Proposed Models MAE RMSE Coefficient of Determination(R?)
Duration of fog Duration of Duration of fog Duration of Duration of fog Duration of
dense fog dense fog dense fog
LightGBM 181 0.42 2.84 0.93 0.79 0.78
SVR 2.48 0.36 3.40 0.89 0.76 0.79
RF 1.93 0.35 3.01 0.88 0.78 0.80
Ensemble model 1.79 0.29 2.83 0.82 0.83 0.84
Weighted 1.54 0.27 2.66 0.81 0.88 0.89
Ensemble Model
(b)
Proposed Models MAE RMSE Coefficient of Determination(R?)
Duration of fog Duration of Duration of fog Duration of Duration of fog Duration of
dense fog dense fog dense fog
LightGBM 1.54 0.34 2.66 0.86 0.73 0.71
SVM 1.88 0.31 2.85 0.84 0.70 0.74
RF 161 0.27 2.69 0.81 0.72 0.76
Ensemble model 1.49 0.27 2.57 0.71 0.75 0.80
Weighted 1.48 0.25 251 0.69 0.79 0.82

Ensemble Model

performance evaluation process can be implemented by
utilizing several assessment metrics discussed in
subsection 3.4 (Table 4). These measures were shown to
be highly valuable in assessing the performance of the
appraisal process. The metrics were computed on the
entire set of testing datasets to assess the sufficiency and
validity of the proposed dynamic weighted ensembles,
simple ensemble models, and their best combination of
base benchmarked models. The objective of this study was
to generate highly precise predictions  while
acknowledging the probable margin of error in these
estimations. These measurements serve as more reliable
indicators of accuracy in this context, as they offer
valuable information regarding the potential margin of
error in the predictions. Performance indicators were
calculated for all models to provide a consistent and
accurate evaluation of the prediction of the duration of
low visibility events (fog and dense fog). The study
measured the divergence between observed and predicted
values. As performance metrics decline, model accuracy
increases. The Coefficient of Determination (R?) indicates
prediction accuracy. The three algorithms' prediction
abilities can be compared using MAE and RMSE
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performance metrics. The results of the performance
evaluation for the discussed models for the
nearcast duration of fog and dense fog for the lead times
of a day and two days are presented in Tables 5(a&b),
respectively.

Grid search is used to find the best model and
optimal hyper parameter settings. Section 3.3 provides
more detail about the best hyper parameter combinations
and the proposed algorithms. Lower values for mean
absolute error (MAE) and root mean squared error
(RMSE) are indicative of superior model performance.
Consequently, among the benchmarked machine learning
(ML) models, the performance order for predicting fog is
Light GBM > RF > SVR, and for dense fog, RF > SVR >
Light GBM, with lead times of one and two days.
Additionally, the implementation time for the models
follows the order LightGBM > RF > SVR. In summary,
the ensemble models demonstrate superior performance
compared to their base models (presented in Table 5).
Notably, the dynamic weighted ensemble outperforms
both the basic ensemble and the benchmarked base
models. Consequently, the dynamic weighted ensemble
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model emerges as the top-performing model for predicting
both fog and dense fog for the next few days.

The coefficient of determination (R?) gauges the
extent to which the variance in the dependent variable can
be foreseen from the independent variables. A higher R?
value, approaching 1, indicates a better fit for the model.
In the context of the benchmarked models, performance
ranks as follows for nearcasting of fog: Light GBM > RF
> SVR, and for dense fog: RF > SVR > Light GBM.
Notably, the accuracy of predicting dense fog surpasses
that of fog in the same time domain. The dynamic
weighted ensemble model stands out with the highest R?
values (0.88 and 0.89 for lead times of fog and dense fog,
respectively), signifying its superior ability to elucidate a
larger proportion of the data's variance compared to other
models. The dynamic weighted ensemble model works the
best, as it has the lowest errors (MAE and RMSE) and the
highest coefficient of determination (R?) for both fog and
dense fog predictions.

The proposed multivariate dynamic  weighted
ensemble models required only 80-90 seconds to train and
less than 30 seconds to get the results of the validation
datasets. Also, the proposed models achieve very high
accuracy (presented in Table 5). From this, we can draw
some concluding technical observations based on the
findings. Therefore, we may summarise some technical
findings based on the preceding results:

(i) It is important to use data-driven methods to quickly
find the most important features and build multivariate
models for comparison, since there are many things about
the duration of low-visibility events (like fog or dense fog)
that can change how well and accurately they are
predicted.

(if) Because of the limitations of most models, it is
important to present a dynamic weighted ensemble model
for nearcasting the duration of low-visibility events (fog
or dense fog).

The final findings demonstrate that the proposed
model increases prediction accuracy while decreasing
training time. The model's input and output can also be
modified to meet changing needs.

4.  Conclusions

This research endeavors to forecast the most
challenging periods of fog and dense fog in terms of
calendar days. The practical implications extend beyond
aviation services, impacting areas such as tourism,

agriculture, transportation, maritime, and rail services.
The research uses machine learning (ML) models to find
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the best combinations of algorithms and how to tune their
hyper parameters based on the knowledge of forecasters
and local conditions of the fog-prone Indo-Gangetic Plain
(IGP) regions about the things that cause low visibility
events, such as the onset and dissipation of the most
noticeable radiation, advection fog, and its combination.
The proposed dynamic weighted ensemble models utilize
the potential of the three different best combinations of the
ML models: random forest (RF) for bagging, light GBM
for boosting, and support vector regression (SVR) for the
robust and most generalizable output. The real database
for the research is sourced from historical observations of
Surface Meteorological Instruments (AWoS) at synoptic
hours (03 hours), daily observations of rainfall and
sunshine from Class | Observatories, duration of low
visibility events data derived from Transmissometers and
scatterometer visibility readings, and upper air data from
the IMDAA reanalysis dataset. The selection of pertinent
explanatory variables for the models employs statistical
measures such as the Pearson correlation coefficient and
Spearman's rank correlation coefficient. Comparing the
prediction accuracy of the benchmarked models for the
prediction of fog in a calendar day, Light GBM
has superior performances compared to RF and SVR,
and for the duration of dense fog, RF has superior
performances compared to SVR and Light GBM in

terms of RMSE, MSE, and R2% The proposed
dynamic weighted ensemble model outperforms a
simple ensemble, and its benchmarked models

demonstrate the effectiveness of the models across
different locations. The models exhibit significant
variability in their performance, with some excelling
while others struggle to predict the duration of low-
visibility events. Ensemble models prove valuable
in striking a balance, delivering the best and
most balanced results across different datasets, notably
surpassing the performance of individual models.
While the study achieves promising results using
training and testing of the real-time observational
datasets and the IMDAA Reanalysis datasets, in practical
applications, the trained models perform well on the real-
time observation data of the upper air data. Additionally,
for the improved performance of the proposed models and
the timing of the low-visibility events in the
implementation of the proposed models, the earlier
proposed study (Shankar and Sahana, 2023b) sorted out
the most important issues of the location-specific forecast
of low-visibility events.

Data availability

The three hourly(synoptic) surface meteorological
datasets (observed from AWoS) of Patna Airport, Class-I
Observatory Data of Patna, taken from the National Data
Centre, Climate Research Station of the India
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Meteorological Department, where weather data of the
India Meteorological Department is available through the
portal https://dsp.imdpune.gov.in/, Also, the Upper Air
IMDAA dataset is accessible from its portal, https:/rds.
ncmrwf.gov.in/. It is noted that these portals can be
accessed publicly. Also, data can be shared after the
request.
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