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ABSTRACT. Agriculture, health, transportation, and hydrology are among the many sectors that rely significantly
on intra-seasonal temperature fluctuations during the winter. The intra-seasonal variability of minimum (Tu,) and
maximum temperature (Tnax) iS observed across India during the winter season of November to February (NDJF). This
study analyse the real time extended range forecast (ERF) skill of Tmin and Trax Over India during the winter season, i.e.
NDJF of 2020-2021, using the Climate Forecast System version 2 (CFSv2) coupled model, operational in the India
Meteorological Department. The statistical metrics, such as forecast accuracy, bias, probability of detection (POD), false
alarm ratio (FAR), probability of false detection (POFD), critical success index (CSI), and the equitable threat score
(ETS), are used to assess the temperature forecasting capability. A four-week quantitative comparison of observed and
models predicted T, is carried out, utilising every Wednesday’s initial condition as the starting point. Throughout
central India and northwest India, the intra-seasonal variability of observed Tpax and Tmin revealed a considerable
reduction and rise in temperature over the winter season, with Tn, fluctuation showing greater variability than T
variability. The trend and intra-seasonal variations in Tma and Tpin over India were well reflected in the real time
extended range forecast during the season, up to 2 to 3 weeks. In a homogeneous region, northern and central India have
higher skill levels than the southern peninsula and northeast India. At the district level in central and northwest India,
categorical and quantitative forecasting ability was also found to be much more significant. As a result, for applications in
various industries, the operational ERF of Tpay and Trin With a lead time of 2 to 3 weeks may provide a reliable forecast.
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1. Introduction

During the winter season, significant weather
phenomena occur in the northwest and central parts of
India associated with the passage of western disturbances
(Dimri et al., 2015; Midhuna et al., 2020). A western
disturbance  occurs  when  moisture-laden  winds
replace cold and dry north-westerly winds with warm
and moist easterly breezes. The Mediterranean is
the source of western disturbances and cold waves,
which ultimately migrate eastward into north India
and higher terrains. As a result, they bring not only
rain but also foggy and severe cold wave conditions to
the country's north and north-eastern regions. Cold waves
in India are occasionally caused by the north-south
passage of winds from Siberia towards the equator.
The major part of India is affected by a dry cold
wind from the north, resulting in the formation of a
cold wave (Dimri and Chevuturi 2016; Joseph et al.,
2019). Cold weather spells can be experienced throughout
the Northwest and Central parts of India from November
to February (NDJF). During the winter season,
the passage of western disturbances, intense snowstorms
in the Himalayan region, and the rainfall connected
with them can be noticed (Lang and Barros 2004). The
cold weather had arrived early over northern India in
the winter season for 2020-21 of the year 2021, as strong
winds swept in from the northwest, causing a moderate
to severe winter, indicating the La-Nina impact, lowering
temperatures (Zhang and Kumar, 2024). As a result of
La-Nina, sea surface temperatures in the eastern
and central Pacific Ocean were below normal, which
impacts India as it brings the wind from northern Asia,
particularly Siberia, into the country.

Considering the local climatic conditions, the India
Meteorological Department (IMD) defined the cold waves
and severe cold waves based on the threshold values
(Rajeevan et al., 2023). The cold wave condition is
defined when the minimum temperature is less than or
equal to 10 °C and simultaneously the departure is -4.5 °C
to -6.4 °C, while said to be a severe cold wave when a
similar condition exists for T, and departure is -6.5 °C or
less (for the plane region). Different studies were
performed on the cold wave climate, its frequency and its
persistence (Bedi and Parthasarathy 1967; Raghavan
1967; Subbaramayya and Rao 1976; Samra et al., 2003).
In India, these cold weather conditions are generally
experienced during the period from November to
February, NDJF.

As per the April 2023 IMD report, regions in
northwest and central India reported the longest cold wave
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periods, lasting 10 days or more. Notably, Jammu and
Kashmir endured the lengthiest cold wave period, lasting
18 days, while Bikaner and Jodhpur in western Rajasthan
experienced a 16-day cold wave period. Additionally,
Maharashtra witnessed cold wave periods exceeding 8
days. The majority of stations reporting cold wave periods
of 5 days or more were situated in North, Northwest and
Central India. Conversely, regions such as Kerala, coastal
Karnataka, Tamil Nadu, and coastal Andhra Pradesh
experienced fewer than 2 cold wave days per season.
Since 2016, there has been an increase in the number of
cold wave frequencies, raised from 2 to 5, particularly in
northern regions where the maximum cold wave days
increased from 4 to 5.

According to the climate diagnostic bulletins
published by IMD (https://rcc.imdpune.gov.in/
products.php), since 1901, during the winter of 2020-21
the mean temperature over India was 21.43 °C and
remained third highest behind 2016 (21.8 °C) and 2009
(21.59 °C). Similarly, the T, over all of India was 15.39
°C, after the year 2016. During the winter season of 2020-
21, cold weather conditions were mostly moderate
throughout central, western, and sections of eastern India
in January, while cold wave conditions were mostly noted
in the second half of the month (January) in northern
India. During the first two weeks of February, there was a
spell of cold wave that lasted for two days. According to
the IMD, the average monthly T, in northwest India in
January 2021 was lower than in 2019 and 2020. However,
average monthly maximum temperatures were 2° to 4 °C
below normal in the Indo-Gangetic plain, as well as in
regions of south Punjab and north Haryana to the west in
January 2021. Several studies have indicated a significant
increase in cold wave days over the Northwest India
homogeneous region during the post-monsoon and winter
seasons (Bhatla et al., 2016; Gupta et al., 2018). A study
indicates a consistent rise in the frequency of cold wave
days since 2017 (Ray et al., 2021). The country saw 63
days of cold waves in 2018, which climbed by 1.5 times to
103 days in 2019. India experienced 99 days of cold
waves in 2020, as per IMD reports. During the 2020-21
winter season, many parts of central and northwest India
witnessed cold waves and severe cold wave conditions,
particularly during the 2™ week of November, 2020; 3"
week of December, 2020 and also towards the end of
January and beginning of February, 2021. This cold
period has the potential to reduce crop yields, as well as
have negative consequences for agriculture, livestock, and
human health (Samra et al., 2003). It has an impact on
energy consumption, the ecosystem, and biodiversity as
well. Human mortality due to cold waves was 76 times
higher in 2020 than those due to hot waves. Cold waves
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claimed 152 lives in 2020, compared to just two deaths
from heat waves (NSO 2021).

Recently, IMD has implemented a coupled
modelling system for the operational extended range
forecast (ERF) based on the CFSv2 coupled model
(Pattanaik et al., 2019, 2020). The ERF of air temperature
(hereinafter temperature) up to 3 to 4 weeks has numerous
applications in sectors like agriculture, energy, health,
insurance, power etc. Heat and cold wave forecasting with
high accuracy can save lives and avoid property damage
from these catastrophic weather events. The ERF also
shows promising results in providing useful guidance for
the heat and cold waves during summer and winter, with a
statistically significant correlation coefficient (CC) for up
to two weeks (Pattanaik 2015; Pattanaik et al., 2019). As
documented by earlier studies, operational ERF at
homogeneous regions and sub-division level shows
reasonable skill in predicting rainfall during the monsoon
season (Pattanaik and Sahai 2018; Mandal et al., 2019;
Pattanaik et al., 2019). It is observed that, many studies
have been carried out to evaluate the skill of ERF at all
India levels and also at meteorological scales, particularly
for the monsoon rainfall during southwest monsoon
season (Pattanaik et al., 2021, 2022) at district level scale
and also the heat wave during the summer monsoon
season (Pattanaik and Sahai 2018; Joseph et al., 2019) on
sub-divisional scale. However, in order to fill the void for
the precise ERF skill forecasting over the smaller spatial
district domain for T, forecast, a separate study will be
more beneficial for the user or different stakeholder’s
communities. The present study deals with the real time
skill performance analysis for the extended range forecast
during the winter season from November 2020 to
February 2021. The study analyses the quantitative
forecast skills over the homogeneous Indian regions and
sub-divisions along with the categorical skill forecast over
the smaller spatial domain at district level over India.

2. Data and methodology

2.1. Model data

The current research aims to evaluate the
performance of the National Centre for Environmental
Prediction’s (NCEP’s) CFSv2 coupled model (Saha et al.,
2014), presently operational in IMD, in predicting the cold
and extreme cold waves during the winter season of 2020-
2021, covering the months of November, December,
January and February (NDJF). The current study
considers the month of NDJF, as most of the cold waves
and severe cold waves over India occur during these
months. A suite of models from the CFSv2 has been
implemented in IMD. A total of four ensemble members,
CFSv2 at T382 with horizontal resolution of around 38
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km, CFSv2 at T126 with spectral triangular truncation of
126 waves and horizontal grid resolution of 100 km,
GFSbc a Global Forecast System model version 2
(GFSv2) forced with bias corrected daily SST (bias-
corrected SST from GFSv2) at T382 (~38 km), and
GFSbc at T126 (~100 km), are run operationally for the
period of thirty-two days based on the initial condition of
every Wednesday. Subsequently, mean and anomaly
forecasts on every Thursday are prepared, which are valid
for four weeks (Friday to Thursday) for days 02-08 (week
1), days 09-15 (week 2), days 16-22 (week 3), and days
23-29 (week 4). The model used for the average ensemble
forecast anomaly of all the four sets of model runs of 4
members each for 18 years of hindcast climatology.
Ensemble members derived from different resolutions are
weighted on their respective skill levels. The statistical
method, Bayesian model averaging, is employed to
optimize the combination of forecasts from different
resolutions, considering their strengths and weaknesses.
The day one forecast is excluded in the operational
analysis as it takes time to accomplish the model
integration (multi-model ensemble) and the generation of
customised products for different sectorial applications.
The mean correction method suggested by Richardson
(2001) is utilized for the bias-corrected maximum
temperature (Tpa) and minimum temperature (T.,) of
1°x1° output data obtained from averaging ensemble
outputs. The dataset covers the Indian mainland and has a
resolution of 1°x1° same as of averaging ensemble model
output. The formulation can be given as

i1 Fi = Xie1 0 1)
where, F; denotes the forecasted temperature and O;
denotes the observed temperature. The model outputs are
assessed in comparison to daily observed T s and Ty, Of
the India Meteorological Department (IMD) available at
the spatial resolution of 1°x1° (Srivastava et al., 2009).
This study uses the climatological normal from 1981-2010
for Thax and T, from the observed data over the Indian
land area at 0.5°%0.5° resolution.

2.2. Methods

A comprehensive study is performed on India's
homogeneous meteorological regions, which have
different meteorological subdivisions and include the
districts of India, as shown in Fig. 1. The T and Ty
gridded data in observation and model outputs are
available at a coarser resolution and possibly very few
grid points fall at the district level (lesser spatial extent) as
compared to met-subdivisions and homogeneous regions.
To overcome this challenge, a bilinear interpolation
technique is applied to re-grid the observed and model
data at finer spatial resolutions of 0.125°%0.125° to cover
all the 676 districts of variable sizes spreading over India
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CENTRAL INDIA
NW INDIA
NE INDIA

PENINSULAR INDIA

1 ANDAMAN-AND-NICOBAR-ISLANDS

2 ARUNACHAL-PRADESH

3 ASSAM-AND-MEGHALAYA

4 NAGALAND-MANIPUR-MIZO-AND-TRIPURA
5 SUB-HIM-WEST-BENGAL-AND-SIKKIM

6 GANGETIC-WEST-BWNGAL

7 ORISSA

8 JHARKHAND

9 BIHAR

10 EAST-UTTAR-PRADESH

11 WEST-UTTAR-PRADESH

12 UTTARANCHAL

13 HARYANA-CHANDHIGARH-AND-DELHI
14 PUNJAB

15 HIMACHAL-PRADESH

16 JAMMU-AND-KASHMIR

17 WEST-RAJASTHAN

18 EAST-RAJASTHAN

19 WEST-MADHYA-PRADESH

20 EAST-MADHYA-PRADESH

21 GUIARAT

22 SAURASHTRA-KUTCH-AND-DIU
23 KONKAN-AND-GOA

24 MADHYA-MAHARASHTRA

25 MARATHWADA

26 VIDARBHA

27 CHATTISGARH

28 COSTAL-ANDHRA-PRADESH

29 TEEANGANA

30 RAYALASEEMA

31 TAMILNADU-AND-PONDICHERRY
32 COSTAL-KARNATAKA

33 NORTH-INTERIOR-KARNATAKA
34 SOUTH-INTERIOR-KARNATAKA
35 KERELA

36 LAKSHADWEEP

Fig. 1. Meteorological homogeneous regions, sub-divisions and districts in India

(Fig. 1). The method of bilinear interpolation can be
obtained in the following manner (Andrews and Patterson
1976).

Let, G(xo,¥0), G(X1,¥0), G(x0,¥1) and G(x;,y,) be
the four points over the rectangular grid (with coarser
resolution) data as shown in Fig. 2. To obtain the data at
each shape area grid point P(x;y;) a bilinear
interpolation approach is used. To obtain the value at the
interpolating point P(x;,y;) located inside the shape area
having coarser grids, four-point rectangular grid data is
identified based on the latitude and longitude values. A
One dimensional grid interval along the longitude and
latitude direction Ax and Ay respectively is set. where,

)
(©)

Ax G(Xl,)/o) - G(XO'YO)

Ay = G(x0,¥1) — G(x0,¥0)

These intervals set the maximum bounding limit for
each of the rectangular gridded data. One dimensional
linear interpolation along the longitudinal direction is
given as

06X
Q(x,¥0) = E(G(xp)’o) — G (x0,Y0))

+ G (X0,Y0) @
Q(xy,y1) = (G(xl'}ﬁ) G(x0,¥1)) (5)
+ G (%0, y1)

These equations of one-dimensional interpolation
can be extended to the bilinear interpolation method to get
the value at point P(x;, ;) as follows

_ 6Y
= E(Q(xi,)ﬁ) - Q(xi'y()))
+ Q(x1, ¥0)

P(x;,y:)
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[_ (G(x1,y1) — G(x0,¥1))

+ G(X0, 1))
0X

- E(G(xp%)

= G (x0,Y0))

+ G (%0, Y0))]
06X G

+ E( (x1,¥0)

= G (x0,Y0))
+ G (x0,Y0))

60X 6Y oY
= ——G(x 0'y1)+_ (1

Ay Ay
0X
- E)G(xo»%)
+ 0X 1
A
% (6)
- A_)G(xLYO) +(1

) (*0,Y0)

The final value at the bilinear interpolation point is
independent of the order of the step followed, i.e., if one-
dimensional bilinear interpolation along latitude is carried
out first followed by the longitudinal direction, the
resultant value will be the same.

Thus, the resultant data value for the given shape is

given as

1 m n
D@D = 5 ). ) PG y) VPG €5, (7)

i=0 j=0
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Fig. 2. Geometric representation of a bilinear interpolation method
representing the interpolation of shape area points from
rectangular gridded data points

where N denotes the total number of points in a given
shape area, m and n are the number of coordinate points
for x and y directions respectively. Equation 7 gives the
data value for the given spatial domain (Sub-division or
district) obtained from the mean of interpolated data and
associated data points in the given domain.

Bilinear interpolation works as a robust technique for
extracting temperature data at sub-division and district
levels from coarser grid sizes. The method's validity was
assessed by comparing the interpolated data extracted at
the sub-division level with the corresponding data of IMD.
By leveraging neighboring data points and linear
interpolation between them, this method effectively
captures spatial variability in temperature, providing more
accurate and localized estimates. The method adds
advantage to temperature data extraction from the courser
grid as the maximum characteristics are preserved in the
interpolation method. This ensures that the extracted
temperature values maintain the overall trends and
variations observed in the broader grid dataset, thereby
enhancing the accuracy and reliability of the extracted
information.

2.3. Evaluation matrix

Statistical measures are used in forecast skill analysis
to assess the relationship between observed and forecasted
temperature values. The correlation coefficient (CC)
technique is used to assess the prediction skill of the
model with observation in an extended time period (i.e.
weekl to week4 average). The correlation coefficient
indicates how well the forecasted temperature values align
with the actual observed temperature values. A CC close
to 1 indicates a strong positive linear relationship,
suggesting high forecast skill, while a coefficient close to
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TABLE1

Contingency table to estimate the frequency of ERF model
data with observed data

Observed Data

Yes No
ERF  Yes Hits (a) Misses (c) atc
Model -
No False Alarm (b) Correct Negative (d) b+d
Data
Total
+ c+d
atb (a+b+c+d)

-1 indicates a strong negative linear relationship. A
coefficient near 0 suggests a weak or no linear relationship
between the forecast and observed values. For the current
research, the CC is calculated using equation 8 as follow
(Callaghan, 1996)

_ L1(Poi — P)(Pri — Py)

VI (Pyi — Py)? f 1Py — Pp)?

where P,; and Py; are the observed and forecasted values
at the N number of selected grid points. F,and Py are the
average values of the observed and forecasted estimations
for N values.

cc (8)

The accuracy of model prediction is further
evaluated by using the categorical temperature forecast's
yes/no nature. The term categorical refers to the fact that
the forecast verification is either yes or no. Each
verification time is graded in one of four categories: hits
(a), false alarms (b), misses (c), or correct negatives (d).
The contingency table, for example, depicts the frequency
of 'yes' and 'no’ projected and actual events, where yes
indicates that an event occurred and no indicates that it did
not. Table 1 shows the yes and no events that make up a
contingency table. Other computations are also performed
to evaluate the model's ability to forecast Tpa and T,
during the DJF. Accuracy, Bias, Probability of Detection
(POD), False Alarm Ration (FAR), Probability of False
Detection (POFD), Critical Success Index (CSI), and
Equitable Threat Score are some of the factors to consider
(ETS). All of these are calculated using hits, misses, false
alarms, and correct negatives, as described in a
contingency table. Accuracy (fraction correct) gives what
fraction of the forecast was correct. Accuracy ranges from
0.0 to 1.0 with 1.0 as a perfect score (Wilks, 2011).

ACCURACY
_ Hits(a) + Correct Negative(d)

Total

(©)
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Figs. 3(a&b). Daily observed (a) Maximum temperature average and (b) Minimum temperature average over India as a whole, Northwest India and

Central India

The frequency bias or Bias (BIAS) score gives the
forecasted frequency of ‘yes’ events compared to the
observed frequency of ‘yes’ events. Bias score ranges
from 0.0 - oo, with 1.0 as a perfect score. When the bias
score is less than 1.0, it indicates that the forecast system
tends to under-forecast, while a score greater than 1.0
shows system over-forecasting (Schwartz, 2017)

Hits(a) + False Alarm(b)

BIAS =
Hits(a) + Misses (c)

(10)

Similarly, the probability of detection (POD)
corresponds (Wehling et al., 2011) to what fraction of the
observed ‘yes’ events were correctly forecasted. With a
perfect score as 1.0, POD ranges from 0.0 to 1.0.

Hits(a)

POD =
Hits(a) + Misses (c)

(11)

The false alarm ratio (FAR) measures the fraction of
the ‘yes’ forecasted events that did not occur. The FAR
value ranges from 0.0 to 1.0, with a perfect score of 0
(Lim et. al., 2019).

False Alarm(b)
Hits(a) + False Alarm(b)

FAR = (12)

Probability of false detection (POFD) responds to the
question of what fraction of the observed ‘no’ events were
incorrectly forecasted as ‘yes’. With a perfect score of 0.0,
the POFD value ranges from 0.0 to 1 (Wilks, 2011).

POFD
False Alarm(b)

— (13)
~ Correct Negative(d) + False Alarm(b)

The critical success index (CSI) answers the question
of how well the forecast ‘yes’ event corresponds to the
observed ‘yes’ event. The CSI score ranges from 0.0 to

1.0, with 0.0 indicating no skill in the forecast and 1.0
indicating a perfect score (Schaefer, 1990).

CSI
Hits(a)

— (14)
"~ Hits(a) + Misses(c) + False Alarm(b)

The equitable threat score (ETS) responds to the
question of how well the forecast ‘yes’ event corresponds
to the observed ‘yes’ event. The equitability in ETS
allows the score to be compared more fairly across the
different categories. The ETS value ranges from -1/3 to
1.0, with a score indicating 0.0 as no skill and 1.0 as a
perfect score (Mesinger, 2008).

ETS
Hits (a) + HitSRandom

- (Hits(a) + Misses(c) + False Alarm(b)
_HitsRandom)

(15)

where,
(Hits(a) + Misses(c))(Hits(a)
+False Alarm(b))
Total

Hitspandom =

Figs. 3.a-b represents the daily weighted area
average time series calculated by taking the summation of
the product of temperature value at sub-divisional level
and area weightage to the sum of area weightage for the
entire Indian subcontinent, the North-West (NW)
landmass, and the Central (Cl) landmass. The weighted
area average can be given as (Liou, 1992)

_ Xj=1D(Sa)jA,
= S

W, - (16)
j=1

where D(S,); is the data value for the sub-division
in the landmass for which the weighted area average be
calculated and A; gives the corresponding area for the
sub-division. The daily T for the area Cl continues to
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Figs. 4(a&b). Daily anomaly in observation for (a) Tmax and (b) Tmin over India as a whole, Northwest India and Central India

be slightly higher than the whole India average, while the
daily T for NW India continues to be lower than the
overall India average. T Was found to be around 5 °C
lower during the peak winter days/months (December and
January) than during the other months. The fluctuation in
Tmax, ON the other hand, follows similar patterns during the
entire season across India, the Northwest, and Central
India. Also noted over these regions during the first few
days and last week of December was an increase in the
Tmax- There is a strong correlation between the arrival of
western disturbances and the onset of cold wave
conditions across the northern parts of India. Cold air
from northern latitudes is transported into India by
western disturbances, which appear as eastward-moving,
well-marked troughs in the upper troposphere of westerly
winds north of 20° N and are frequently observed
extending into the lower troposphere.

Further, the departure (or anomaly) in T and T
are shown in Figs. 4a-b respectively for the country as a
whole, NW and CI. During the winter season from
November 2020 to February 2021, the maximum
temperature remains normal, with the occasional drop-in
departure around 2.5 °C during the end of November and
mid-December. The Tmin departure during the season can
be observed oscillating with a negative temperature
anomaly in mid-November, mid-December, and January
end with a positive temperature anomaly. In the smaller
regional domain of Northwest India, cold wave conditions
prevailed with the minimum temperature departure
ranging from 3 °C to 4.5 °C between 20-24 November, 18
December — 02 January, and 27-31 January. Figs. 4a
shows that the maximum temperature departure for the
NW Indian region can be observed below normal
condition throughout November-January, followed by the
positive departure in maximum temperature. In the case of
the Central India region, the minimum and maximum
temperature departure closely followed India's departure
trend as a region.
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From Figs. 4 for the Northwest India region, it can
be observed that the long-term drop in maximum
temperature departure was followed by a sharp decline in
the minimum temperature departure during the season.
During 15-26 November, the maximum temperature
departure ranges from 3.5° C to 5° C. Similarly, a
negative anomaly can be observed during 13-20
December and 24-31 January for maximum temperature.
The minimum temperature departure peak can be seen on
22 November, 18 December, and 29 January, showing the
peak minimum temperature departure following the long-
term peak drop in the maximum temperature departure.
The large-scale features associated with these cold waves
over the Indo-Gangetic Plains (Northern parts of India)
during the winter season of 2020-21 are associated with
cold north-westerly winds reaching from the cooler
regions of Central Asia/ Hindukush, lowering
temperatures over the regions, resulting in cold wave
conditions.

3.  Results and discussion

3.1. Minimum Temperature (Tm,) Bias in ERF
during winter season

IMD prepares temperature forecasts on a weekly
basis for extended time periods based on the operational
run of CFSv2. However, there is a consistent bias in
temperature prediction. The bias in a predictive
deterministic model arises from incorrect parameterisation
and a lack of sufficient observation of the model's initial
conditions. Accurate weather prediction is made
considerably more difficult by the presence of systemic
biases in the models (Pattanaik et al., 2017a; Kumar et al.,
2022). Biases must be reduced using statistical or
dynamical methods (post processing) to increase forecast
predictability and accuracy (Singh et al., 2020). Bias
correction approaches have resulted in significant
changes/improvements in the raw forecast and approach to
observation since they reduce the mean error in the
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(a) Week-1

(c) Week-3

(b) Week-2

(d) Week-4
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Figs. 5(a-d). Mean Bias for the CFSv2 Tmin forecast for (a) Week-1 (b) Week-2 (c) Week-3 (d) Week-4 for the NDJF period

model's forecast. Richardson's simple mean correction
method is a statistical technique used in the context of bias
correction for various meteorological and climate
variables, particularly temperature and precipitation. It
addresses biases or systematic errors present in climate
model simulations or observational datasets. The
technique used is relatively straightforward and involves

290

correcting biases by adjusting the mean of the model or
observed data. It calculates the mean bias (the average
difference between model and observed data) and then
subtracts or adds this mean bias to each data point in the
dataset. The bias can be considerably reduced by post-
processing raw forecast using appropriate techniques. As a
result, bias correction is applied to the raw ERF



ALONE et. al.: COUPLED MODEL BASED OPERATIONAL EXTENDED RANGE FORECAST OF TEMPERATURE OVER INDIA

temperature forecast over a 32-day period. The bias-
corrected T, forecast was compared to the raw forecast
of Tnin Over the districts, as shown in

Figs. 5, to determine the quantitative improvement on a
weekly basis. The figure also shows the consistency of
negative bias over the Himalayan region and positive bias
over the central Indian region over the four-week period.
The model forecast shows the general tendency to be very
high or very low in this region, which occurs due to the
consistent difference in actual temperature and previously
generated forecast. (Pattanaik et al., 2017b) The heat wave
analysis shows the model bias in T Over extreme north
India; northeast India shows negative bias while Gujarat
and adjoining northwest India extend south-eastwards
along the Indo-Gangetic plain towards Odisha,
showing positive bias.

The Himalayan range above the northeast and
northwest regions has a negative bias. In contrast, the
planes of the central and northwest regions have a positive
bias for all four-week raw forecasts, as seen in the figure.
It is also worth noting that just a few districts in the
eastern south peninsular have a negative bias across the
four-week period. Positive bias implies that the raw model
forecast has a propensity to under-predict, whereas
negative bias suggests that the model forecast has a
tendency to over-predict. The large negative bias over the
Northeast and western parts of the Himalaya region and
positive bias over central India could be due to imperfect
model physics, initial conditions and boundary conditions
(Hart et al., 2004; Krishnamurti et al., 2004; Durai and
Bhradwaj 2014). As shown in

Figs. 5, the CFSv2 model has to be corrected for this
bias. Richardson's simple mean correction approach is
utilised to reduce model temperature forecast biases in this
study (Richardson 2001).

3.2. Performance of real time ERF of minimum
temperature (T,,) during winter 2020-2021.

Fig. 6(a-c) depicts the weekly T, in observation and
ERF forecast for different initial conditions (IC) for a
four-week lead time (week 1 to week 4) for all India, NW,
and CI. It is worth noting that the ERF forecast accurately
predicted the intra-seasonal drop in minimum temperature
during the winter period of 18-24 December and 25-31
December 2020. ERF closely captures the trends in Tmin
with the observed minimum temperature over the four-
week forecast period during the entire season for the NW
India of the homogeneous region (Fig. 6b). Fig. 6¢ depicts
the trend of T.i, (weekly average) during the winter
season 2020-2021, which is well below the ERF model
forecast. Similarly, to the forecasts for all of India as a
homogeneous region, both the Northwest and Central
India homogeneous regions show a close correlation
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during the week beginning December 18" and ending
December 25", 2020.

3.3. ERF skill of Tmin at meteorological sub-
division and homogeneous regions

The spatial correlation coefficient for T, between
ERF and IMD observations are calculated and presented
in Figs. 7 for weekl to week4 over meteorological sub-
divisions of India. It is observed that the week1 CC for the
meteorological sub-division’s ranges from 0.72 to 0.97. In
the subsequent week period i.e. during week2 to week4,
the CC is reduced to 0.32-0.93, 0.36-0.88, and 0.11-0.93,
respectively over the regions of met sub-division. The CC
for W1 and W2 shows high significance and W3 shows
moderate. Although the CC for week4 is positive, it is not
significant for the forecasting. During the weekl, the
north-west, central, eastern and north-eastern parts of met-
subdivisions have the highest CC (more than 0.9). Fig. 7
shows a sudden loss in forecast skills over the southern
peninsular region of India. As seen in Figs. 4 (a & b),
there is an oscillation in maximum and minimum
temperature anomaly to the mean over the repetitive
duration of two weeks. This anomaly shift in weather is
poorly forecasted by the model over these regions with
longer lead time. Also, it can be seen from figure 6 that
although the NW and CI regions show a considerably high
correlation between week3 and week4 forecasts, with the
poor performance of the model in the southern peninsular
region over India.

Fig. 8 shows the CC for all India, along with the
homogeneous region of NW and CI. The weekl forecast
shows high CC for all three domains and is found to be
above 0.9. During the winter, the minimum temperature
forecast is consistent with observations throughout the
season over the northwest and central regions of India.
The north-westerly wind, in conjunction with the anti-
cyclonic circulation that continues up to the middle of the
troposphere, does help in maintaining the minimum
temperature at a level that is below (colder) and uniformly
distributed across the regions at this particular time. A
gradual fall in the CC can be observed beyond the week2
period. In the case of the NW India of the homogeneous
region, the CC value drops till week3, showing a further
increase in the CC value in week4. Since the temporal
variability in T, is noticed, and deflection is supported
largely owing to the approach of Western Disturbance
over the regions, and since these are infrequent
phenomena, therefore, prediction becomes non reachable
due to weak models’ parameterizations. In the case of the
Cl, a significant reliable CC is observed up-to the week3
period. A poor CC is observed for CI in week4. The same
can be reflected through the meteorological sub-division,
showing the high CC for the Northwest regional sub-
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divisions over the all four-week period and higher
correlation up to three weeks in the case of the Central
region sub-divisions. Thus, although the Indian domain,
two homogeneous regions, and meteorological sub-
divisions show a positive correlation, the ERF forecast
over the three weeks shows the usefulness to the users.

3.4. Categorical and quantitative skill analysis over
the district domain

To determine categorical and quantitative
capabilities, an assessment of the Indian domain's whole
districts (676) is conducted. The weeks of 06-12 Nov
2020, 18-24 Dec 2020, and 29 Jan-04 Feb 2021 are
considered to investigate the association between
observed and ERF projected T, (Error! Reference
source not found.). Error! Reference source not
found.(a) depicts the cold weather conditions during the
early winter season, with considerably below normal
minimum temperatures, in all three forecasted weeks over
the districts of the Jammu and Kashmir sub-division, as
well as both homogenous regions of Northwest and
Central India. The cold wave situation prevailed in the
northern part of India throughout the target week 18-24
December 2020, as indicated in Error! Reference source
not found.(b), and its ERF forecasting was well ahead of
schedule with 1C 02 December 2020. The active phase of
a cold wave that was expected to pass over Northwest and
Central India from 29 January to 4 February 2021 in the
ERF was successfully captured with 2-3 weeks lead time
(Fig. 9c). The extreme negative anomaly and the
propagation of cold winds were both accurately
represented by the ERF for the minimum temperature over
the next three weeks, which was based on the IC for
January 13, 2021. The north westerly wind that brings
cold air over the NW and CI is very well captured. The
categorical skill score for India's 676 districts, 179
districts in Central India, and 203 districts in Northwest
India is shown in Error! Reference source not found..
The measured lowest temperature over the district domain
level is categorically analysed with minimum temperature
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anomalies less than -2 in the Below Normal (BN) /
Appreciably Below Normal category, -2 to +2 in the
Normal (N) category, and greater than +2 in the Above
Normal (AN)/ Appreciably Above Normal category. The
accuracy plot for India, Central India, and Northwest India
indicates excellent accuracy in the above normal and
below normal categories, but low accuracy forecast skills
in the normal category. The above-normal category
temperature is under forecasted in all three homogeneous
regions, while it is well predicted in the normal region
with over forecasted with the 4™ week prediction. The
below-normal category depicts over predicting for the first
two weeks, followed by under forecasting for all of India
and the homogenous parts of Northwest India.

The POD plots in Error! Reference source not
found. give the relative operating characteristics of the
forecast. The POD value is high for the N and BN
categories, while the detection probability is at least in the
AN range. In all three categories, with the change in
forecast week, detection probability is seen to be
decreasing. Error! Reference source not found. shows
the FAR indicating the fraction of ERF forecasted events
that did not occur in the observations. From the figure, it
can be observed that the normal category shows the least
false alarms as compared to other categories, with the
below normal category showing maximum false alarms.
In order to find the probability of false alarm rate, POFD
is shown in figure indications the good score in above
normal and below the normal range and least score in the
normal range with an increase in forecast week. Threat
score or CSl, shows that more than half of the minimum
temperature forecast events were correctly forecasted
compared to AN and BN category. The BN category
shows comparatively higher forecast events correct for the
BN category than AN category. ETS corresponding to the
forecasted true events to the observed true events are
shown in the figure. The ETS score shows the higher
skills in the below normal category as compared to others.
It also depicts the better skill in week one forecast over the
week four in all three categories.

4. Conclusions

Temperature plays an essential role in a wide range
of applications, and it is particularly important in
agriculture, power sector, human health, tourism and other
sectors. Minimum temperature (T ;n), on the other hand, is
extremely important throughout the winter since it gets
translated into cold waves and cold days. IMD runs an
operational CFSv2model every week for the ERF
(Forecast up to 4 weeks) of T, and disseminates it to
different stakeholders for sectorial applications. As a
result, we must investigate and evaluate the model's
reliability in simulating T, over the landmass of India.
Therefore, we carry out the present investigation. The
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(b) Target week 18-24 Dec 2020
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(c) Target week 29 Jan-04 Feb 2021
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Figs. 9(a-c). Observed weekly minimum temperature anomaly and three weeks ERF minimum temperature anomaly for the same target
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quantitative and categorical skill analysis is carried out
over India's  temperature = homogenous  areas,
meteorological sub-divisions and smaller geographical
district domains. The skills are evaluated based on the
forecast performance of each week for the T, predictions
for the next four weeks based on the operational ERF. It is
realised that the observed variability of T, in the
observation is very well predicted in the ERF forecast.
However, the model has some biases (positive bias) and it
is slightly over-predicting the below-normal temperature
for the homogeneous regions. Thus, the operational
forecast is prepared with bias correction. The results
reveal that ERF has better performance and reflects
significant skill for periods of up to three weeks during the
winter season of 2020-21. It is relatively challenging to
make an extended-range forecast, which bridges the gap
between medium-range and seasonal forecasts. The ERF
is comparatively difficult, as much memory of the initial
atmospheric conditions is lost, and this may result in
decreased skill at predicting rainfall amounts during W3
to W4. The representation of better physics and
parameterization could enhance the skill in predicting the
Tmin in model simulations. The quantitative forecast skill
analysis performed over the meteorological sub-division
have indicated a significant correlation coefficient
between ERF T, with that of observed T, over the
meteorological subdivisions of northwest and central
India.

The categorical forecast skill of T, forecasts in
terms of prediction Above Normal, Normal and Below
Normal at the district level was analysed in detail using
the verification scores Accuracy, POD, FAR, POFD, CSlI,
and the ETS values. The accuracy of the forecast four
weeks in the three category domains of Above normal,
Normal and Below Normal ranges from 0.81 to 0.79, 0.67
to 0.65 and 0.85 to 0.83, respectively, indicating higher
accuracy in the case of below normal and above normal
cases compared to that of the normal categories. With
regard to the biases, it is relatively low in the normal and
below normal categories, whereas it is slightly higher in
the above normal category showing an over forecasting
tendency. The ETS score shows the higher skills in the
below normal category as compared to others. It also
depicts the better skills in week one forecast over the
week four in all three categories. Thus, these results show
that ERF has good skill over minimum temperature
forecasting with about three-week in advance over the
smaller spatial domains of meteorological sub-divisions
and smaller spatial scale at district level.

Climate systems vary seasonally due to El Nino, La
Nina, and other large-scale climatic trends. The findings
from one year help us understand how coupled models
perform within the changing climate system. This
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research emphasizes  extreme  weather events to
demonstrate the ERF model's usefulness and reliability in
forecasting these.
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