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सार — मह अध्ममनबविष्म के साऩेक्षऺक आर्द्रताऩरयदृश्म के विश्रेषण के ज़रयए कृवष, जर विऻान औय ससिंचाई 

प्रफिंधन जसेै भुख्म ऺेत्रों ऩय जरिामऩुरयितरन से सिंबावित प्रबािों की जािंच कयती है। “चेंज पैक्टय भेथड” का उऩमोग 
कयकेहभ सािंख्ख्मकीमरूऩ से कभ ककए गए िखै्श्िकजरिाम ुभॉडर अनकुयण के एक सिंगठन का उऩमोग कयके बीभा सफ-
फेससन भें योज़ाना की औसत साऩेक्षऺक आर्द्रता को ननम्न स्तयऩय घटामा जाता है। हभाया कें र्द् अरग-अरग रयपे्रजेंटेटटि 
किं सिंटे्रशन ऩाथिे (RCP) ऩरयदृश्म के तहत औसत दैननक साऩेक्षऺक आर्द्रता भें ऩरयितरन का आकरन कयने ऩय है। ननष्कषर 
सबी RCP ऩाथिे भें साऩेक्षऺक आर्द्रता भें रगाताय गगयािट टदखाते हैं, ख्जसभें RCP 6.0 औय RCP 8.5 जसेै उच्च 
उत्सजरन ऩरयदृश्म भें अगधक स्ऩष्ट कभी देखी गई है। इसके अरािा, मह अध्ममनबविष्म के अनभुानों भें अननख्श्चतताओिं 
की उऩख्स्थनत ऩय बी प्रकाश डारती है, जो ऩारयतिंत्र औय जर सिंसाधनों ऩय सिंबावित प्रनतकूर प्रबािों को कभ कयने के 
सरए रगाताय ननगयानी औय अनकूुर उऩामों की आिश्मकता ऩय ज़ोय देती है। फॉक्स-एिंड-ख्हहस्कय प्रॉट का उऩमोग कयते 
हुएविश्रेषण सभम के साथ फढ़ी हुई अननख्श्चतता को येखािंककत कयता है, ख्जसभें बविष्म की अिगधमों के सरए असभसभत 
डेटा वितयण औय नतयछे प्रनतरूऩ हैं, जो दयू के बविष्म (2081-2100) के अनभुानों की तुरना भें ननकट बविष्म (2021-
2040) के अनभुानों भें अगधक विश्िास का सुझाि देते हैं। प्रदान की गई जानकाय़ी बीभा सफ-फेससन के बीतय प्राकृनतक 
सिंसाधन प्रफिंधन औय जरिाम ुऩरयितरन शभन से सिंफिंगधत भजफतू नीनतमों के ननभारण के सरए भहत्िऩणूर जानकाय़ी प्रदान 
कयती है। मे ननष्कषर स्थानीम अगधकारयमों को ऺेत्र की अनठूी विशेषताओिं के अनरुूऩ एक हमाऩक नीनतगत ढािंचा फनाने 
की टदशा भें सशक्षऺत कयने औय ननदेसशत कयने भें सहामक हैं। 

 

ABSTRACT. This study investigates the anticipated impacts of climate change on key sectors such as agriculture, 
hydrology, and irrigation management through the analysis of future relative humidity scenarios. Employing the Change 

factor method, we downscale daily mean relative humidity across the Bhima sub-basin using an ensemble of statistically 

downscaled global climate model simulations. Our focus lies in assessing changes in average daily mean relative 
humidity under various Representative Concentration Pathway (RCP) scenarios. The findings reveal a consistent decline 

in relative humidity across all RCP pathways, with higher emission scenarios like RCP 6.0 and RCP 8.5 exhibiting more 

pronounced reductions. Furthermore, the study highlights the presence of uncertainties in future projections, emphasizing 
the need for continued monitoring and adaptive measures to mitigate potential adverse impacts on ecosystems and water 

resources. Utilizing a box-and-whisker plot, the analysis underscores heightened uncertainty over time, with 

asymmetrical data distributions and skewed patterns for future periods, suggesting greater confidence in nearer-term 
(2021-2040) projections compared to distant future (2081-2100) estimations. The insights provided furnish crucial 

information for the formulation of robust policies concerning natural resource management and climate change mitigation 

within the Bhima sub-basin. These findings are instrumental in enlightening and directing local authorities towards the 
creation of a comprehensive policy framework customized to the unique characteristics of the region. 

 

Key words  –  Statistical downscaling, Change factor, Future projections, Relative humidity, RCPs scenarios, 
Bhima sub-basin. 
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1. Introduction 

 

The amount of water vapour in the air relative to 

saturation is known as relative humidity (RH). Its 

prediction plays a crucial role in increasing the accuracy 

of weather forecasting as it is a key indicator of 

precipitation forecasting. The change in saturated vapour 

pressure, which is also influenced by variations in wind 

speed, solar radiation, pressure, temperature, and air 

moisture content, causes a change in the RH. In the 

scientific community, the RH is thought to be a sensitive 

parameter because it influences many aspects of biotic and 

abiotic entities. Human, animal, and plant health are 

influenced by RH fluctuations, affecting the spread of 

pests and diseases and can create environments that either 

foster or inhibit the proliferation of pathogens and pests, 

directly impacting the health of living organisms (Wu, X. 

et al., 2016, Godde et al., 2021).Variations in RH can lead 

to moisture-related issues in buildings, including mold 

growth, deterioration of building materials, compromised 

structural integrity, emphasizing the importance of 

considering RH in construction and building maintenance 

(Chowdhary et al., 2013, Berger et al., 2015).  

  

Evaporation and transpiration processes are 

profoundly impacted by changes in RH. High RH levels 

can impede the evaporation of water from surfaces, 

affecting processes like drying and water cycle dynamics 

(Li, Z., et al., 2021). Additionally, RH levels influence 

transpiration rates in plants, impacting their water 

regulation and overall growth (Chia & Lim, 2022). 

Understanding and addressing the implications of RH 

variations across these diverse domains are crucial for 

various fields, including public health, architecture, 

environmental science, and agriculture. Incorporating 

effective RH management strategies can help mitigate 

potential risks and optimize conditions for human, animal, 

and plant well-being, as well as for sustainable structural 

design and environmental management. 

 

Relative humidity can be linked to several dynamic 

processes, including advection, convection, and 

subsistence, which drive temperature variations. 

Additionally, RH is associated with diverse forms of 

diabatic heating, such as the absorption of radiation & the 

release of latent heat. The phase changes in the 

atmosphere, like cloud formation and precipitation, further 

contribute to these properties (Dinh & Fueglistaler, 2019). 

These inherent characteristics of RH explain its wide-

spread application in various contexts: (i) its integration in 

mesoscale models to parameterize cloud radiative effects 

(Park et al., 2018); (ii) inclusion in crop simulation 

models, demonstrated by the Erosion Productivity Impact 

Calculator (EPIC) model (Wu, Y et al., 2021); (iii) 

utilization in estimating evapotranspiration, such as in the 

Penman-Monteith model (Moratiel et al., 2019); (iv) 

incorporation in climate change impact models 

(Javadinejad et al., 2020; Bourdin et al., 2021; Shad et al., 

2022); (v) its role in modeling greenhouse gases ; (vi) 

application in analyzing urban environments (Kayes et al., 

2019); and (vii) its relevance in hydrologic models (Ricard 

& Anctil, 2019). Therefore, it becomes imperative to 

evaluate the implications of climate change attributed to 

RH at both global and local scales, considering its 

significance across multiple scientific disciplines and its 

impact on various environmental processes. 

 

For researchers and decision-makers evaluating the 

influence of climate change on aspects such as agriculture, 

hydrology, and irrigation management, it is essential to 

have access to future scenarios of relative humidity. 

According to Auer et al. (2021) scenarios enable a more 

comprehensive understanding of the potential impacts of 

climate change on various sectors and facilitate the 

development of appropriate adaptation and mitigation 

strategies to address the challenges posed by changing 

relative humidity conditions. The future is inherently 

unpredictable and difficult to foresee accurately. 

However, a scenario offers a credible depiction of 

potential future developments. To evaluate the uncertainty 

and gaps in knowledge linked to the future, a range of 

scenarios are employed. These scenarios help in 

understanding and planning for a spectrum of potential 

outcomes, allowing for more comprehensive and 

adaptable strategies to navigate the uncertainties ahead 

(IPCC 2018). Global climate models (GCMs) play a 

crucial role in formulating projections of future climate 

change based on predefined emission scenarios (Anandhi 

et al., 2009). However, the direct application of GCM 

output at a regional scale is hindered by the discrepancy in 

spatial resolutions between GCMs and local observations, 

as well as the requirements for conducting local impact 

assessments (Fowler et al., 2007). This necessitates the 

use of downscaling techniques to bridge the gap between 

the global scale represented by GCMs and the finer, 

localized scale needed for accurate regional impact 

assessments. 

 

Researchers have adopted several approaches to 

develop future climate scenarios at a regional scale, 

namely, drawing analogies with distinct climatic zones or 

specific historical time periods (Degroot et al., 2022), 

utilizing global climate model data through 

straightforward adjustments of present climate 

observations - commonly known as the change factor 

methodology (Anandhi et al., 2011) & employing 

advanced statistical & dynamical downscaling techniques 

to derive more refined projections, as highlighted by 

studies such as Anandhi et al. (2011), Ghosh et al., (2012) 

and Ahmed & Kazi (2013).  These  methodologies  enable 
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Fig. 1. Location map of the Bhima sub-basin; Upper Bhima (K5) and Lower Bhima (K6) (study area) 
 

 

understanding of regional climate changes and help to 

generate more accurate and localized climate projections. 

The objective of this study is to evaluate the performance 

of the Change Factor (CF) method for statistically 

downscaling future scenarios of relative humidity. 

 

2. Data and methodology 

 

2.1. Study area 

 

The Bhima River originates in the rain shadow 

region of the Western Ghats in India and serves as a 

significant tributary of the Krishna River. The Bhima sub-

basin (as shown in Fig. 1), covering an area of 70,263 

km
2
, is situated between latitudes 15° N to 20° N & 

longitude 73° E to 78° E. Flowing southeast through 

Maharashtra for approximately 750 kilometers, it shares 

the catchment basins of Karnataka and Telangana states. 

About two-thirds of the population in this basin depends 

on agriculture as a primary source of income & livelihood. 

Agricultural activities here consume a substantial amount 

of water & studies by Garg et al. (2011), Surinaidu (2013), 

Kumbhar, 2014 & Udmale et al. (2014) highlight potential 

impacts of climate change on the water resources sector, 

including prolonged droughts, reduced monsoon rainfall, 

environmental degradation ecosystem imbalances (Samal 

& Gedam, 2021). Hence, it is imperative that the local 

government is informed of the need for robust & resilient 

policies to manage natural resources & implement climate 

change mitigation measures in the Bhima sub-basin." 

 

2.2. Data 

 

Climate research offers a plausible depiction of the 

future and its progression, considering various inputs such 

as greenhouse gas emissions, socio-economic changes, 

technological advancements, and more. These inputs serve 

as crucial components for climate modeling. 

Consequently, the acquisition of climate data is essential 

for predicting climate-induced impacts on ecosystems (De 

Caceres et al., 2018). The Intergovernmental Panel on 

Climate Change's (IPCC) Fifth Assessment Report (AR5) 

identifies Representative Concentration Pathways (RCPs) 

as key scenarios for climate change studies. These 

pathways, including RCP8.5, RCP6, RCP4.5, & RCP2.6, 

serve as benchmarks for understanding potential future 

climate conditions. This research specifically focuses on 

downscaling relative humidity from Global Circulation 

Models (GCMs) using Representative Concentration 

Pathways (RCPs) such as RCP 2.6, 4.5, RCP 6.0, & RCP 

8.5. GCMs enable the estimation of potential climate 

changes based on greenhouse gas concentrations and can 

simulate the climate system's reliability using 

mathematical functions (Nahar & Sharma, 2017). 

 

Global Climate Models (GCMs) function at a coarse 

scale, creating a disparity between their capabilities & the 

hydrological needs required for impact studies. To bridge 

this gap, Wilby et al. (2004) devised statistical models that 

establish connections between the coarse-scale GCM 

outputs and regional hydrological variables, necessary for 

assessing the impacts of a changing climate, using 

observed datasets at a finer scale. This study considers the 

GCMs presented in Table 1, following the ranking 

proposed by Raju et al. (2018) for the Godavari & Krishna 

Basins in India, which include the Bhima sub-basin. 

 

2.3. Methodology 

 

Statistical downscaling, emphasized by Tripathi et 

al. (2006), is an efficient technique requiring less 

computational effort  compared  to  dynamic  downscaling 
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Fig. 2. Flowchart illustrating future scenario assessment with the change factor approach (Laddimath et al. 2021) 

 

 
TABLE 1 

 

List of General Circulation Models (GCMs) Utilized in the Research. 

 

Sl. No. Model Name Model Centre 

1 
MIROCESM_ 

CHEM 
Agency for Marine (Japan) - Earth Science 
and Technology, Atmosphere and Ocean 

research institute for environmental studies 2 MIROC5 

3 CSIRO-Mk3.6 
Commonwealth Scientific and Industrial 

Research Organization 

4 NorESM1 - M 
Bjerknes Climate Research Centre, 

Norwegian Meteorological Institute Norway 

5 GFDL-CM3 
Geophysical Fluid Dynamics Laboratory 

USA 

 
although it has certain limitations (Wangsoh et al., 2017). 

This method is widely used to study the impact of climate 

change on water resources in hydrological modelling. 

Particularly. the Change Factor (CF) approach is notable 

for its simplicity and efficiency in modeling multiple 

Global Climate Models (GCMs) and emission scenarios 

(Anandhi et al., 2011; Sunyer et al., 2015; Agilan and 

Umamahesh, 2016; Hosseinzadehtalaei et al., 2018; Van 

Uytven et al., 2020 and Vishnu et al., 2022). 

 

"The CF method' s reliability is due to its 

adaptability, which allows for the direct scaling of local 

data based on projected changes from GCM models. In 

this approach, factors that represent the 'difference' or 

'ratio' of each GCM for specific scenarios are computed. 

These factors are then applied to observed historical 

climate data (baseline period: 1986-2005) to project future 

climate variables (long-term monthly average data for 

future periods, such as 2021-2040, 2041-2060, etc.). 

Comprehensive details on downscaling climate variables 

using the CF method can be found in studies by Anandhi 

et al. (2011), Sunyer et al. (2015), and Agilan and 

Umamahesh (2016). Additionally, a brief discussion 

provided below: 
 

The Additive Change Factor (ACF) and 

Multiplicative Change Factor (MCF) methods are used for 

scaling climate variables. The ACF method calculates the 

difference between future and current GCM simulations 

(Equation 1), while the MCF method calculates their ratio 

(Equation 2). Future values are then scaled using these 

factors, as shown in Equations 3 and 4. Fig. 2 describes 

the procedure for assessment of future scenarios using CF.  
 

                  )                                   (1) 

 

                                                       (2) 

 

                                                                    (3) 
 

                                                                       (4) 

 

3. Results and discussion 
 

3.1. Assessment of downscaled relative humidity 

results 
 

Historical values serve as references to compare and 

contrast present and future climate conditions. A spatial 

map of the historical era (1986-2005) shown in Fig. 3 

illustrates the variation in daily mean relative humidity as 

a percentage across the Bhima sub-basin, derived from 

NCEP/NCAR data. This map highlights the spatial 

distribution and patterns of relative humidity, providing a 

baseline for assessing changes over time. By examining 
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TABLE 2 

 

Average change (%) in relative humidity over the basin derived from the ensemble average of projections from five GCMs 

 

Scenario(s) Month Time Series Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

RCP2.6 

2021-2040 0.8917 -7.8887 -16.785 -14.123 -1.1144 3.8976 1.0748 2.1975 -0.077 2.6965 3.2296 1.2677 

2041-2060 3.1854 -6.5742 -13.124 -14.616 -6.9262 2.3553 2.2494 2.6462 0.3395 1.6325 1.9313 4.2085 

2061-2080 2.6111 -11.126 -16.511 -19.168 0.4679 3.8705 1.2704 2.2756 -1.2058 0.5901 3.4957 0.667 

2081-2100 1.1573 -11.067 -15.636 -18.333 0.8745 4.9994 2.31 1.6628 -0.8979 1.7004 2.8114 0.7102 

RCP4.5 

2021-2040 -0.1412 -12.019 -13.993 -13.822 -4.051 2.1303 1.9159 3.4683 0.045 1.7273 3.3887 3.0993 

2041-2060 0.923 -7.8528 -11.721 -12.17 -0.9728 1.2822 2.2561 2.842 -0.2253 1.9957 1.7563 -0.6179 

2061-2080 0.8461 -8.211 -12.775 -13.742 2.7883 7.4722 3.5385 2.9032 0.6287 2.5146 4.0032 -0.1538 

2081-2100 -1.3983 -15.503 -19.92 -19.466 -1.9299 3.6556 3.0791 2.4374 -1.0647 1.0488 1.9383 -2.0644 

RCP6.0 

2021-2040 1.0574 -10.356 -16.697 -19.661 -5.5808 4.419 2.2122 2.5641 -0.3602 1.2167 3.4427 1.1777 

2041-2060 0.2551 -11.664 -17.915 -20.436 -3.9845 1.7085 0.9348 1.6392 -1.4638 0.6118 3.7601 2.732 

2061-2080 -5.2801 -18.143 -17.715 -13.192 0.8045 3.8461 1.0787 0.8225 -3.5964 -1.6478 0.0586 -3.6799 

2081-2100 -13.914 -27.534 -30.126 -25.043 -7.6125 1.0956 -0.8293 -0.8313 -4.6586 -4.777 -2.3178 -11.094 

RCP8.5 

2021-2040 4.4582 -5.744 -11.994 -15.265 -2.0816 1.2757 1.1739 2.6695 -0.3575 1.9524 2.8715 4.0986 

2041-2060 2.5455 -8.0595 -12.37 -13.663 -2.8678 3.7274 2.2855 3.2702 -0.0348 2.563 5.6103 4.4525 

2061-2080 -4.7727 -19.594 -27.34 -23.837 -6.6166 0.044 1.4333 2.2867 -1.295 -0.3286 0.2377 -2.7837 

2081-2100 -3.8087 -18.043 -29.229 -23.359 -5.2111 1.4579 -0.0533 1.3844 -1.1825 -0.3839 -1.091 -4.897 

 

 

these historical trends, one can identify areas of significant 

deviation and better understand the impacts of climate 

variability on the region. This analysis is crucial for 

developing adaptive strategies & enhancing the resilience 

of water resources management in the Bhima sub-basin. 

 

3.2. Projection of future changes of downscaled 

relative humidity 

 

The percentage (%) change in daily mean relative 

humidity is calculated utilizing equation 5 as outlined 

below. Spatial maps and histograms depicting the 

percentage change in the average daily mean relative 

humidity, estimated from ensemble averages in RCP 2.6, 

4.5, 6.0, and 8.5 scenarios, are presented in Figures 4, 5, 6, 

and 7 respectively. 

 

       
      

  
                                                           (5) 

       

T1 and T2 represent historical and future periods 

respectively. 

 

According to the ensemble average for the RCP 2.6 

scenario, the anticipated relative humidity shows a 

declining trend in comparison to historical values, with 

values of -1.0%, -0.85%, -1.85%, and -1.8% for each of 

the 20 years intervals from 2021 to 2100 (i.e. 2021-40; 

2041-60; 2061-80 & 2081-2100). About 12 grid sites in 

the basin show considerably larger variations in forecasts 

of mean decreasing relative humidity from 2061 to 2080. 

According to the RCP 4.5 scenario, relative humidity will 

decrease between 2021 and 2100 by -1.05%, -1.0%, 

+0.1%, and -2.5% compared to historical values. About 11 

grid sites in the basin show considerably larger changes in 

relative humidity forecasts from 2081 to 2100. 

 
From 2021 through 2100, the RCP6.0 scenario 

indicates declining trends in relative humidity with -1.8%, 

-2.1%, -4.0% and -9.0% reductions from historical values. 

From 2081 to 2100, around ten grid sites in the basin 

show comparatively larger variations in relative humidity 

forecasts.  The RCP 8.5 scenario also indicates declining 

trends in relative humidity from 2021 to 2100, with -0.5%, 

-0.1%, -5.0% and -5.0% reductions from historical values. 

From 2081 to 2100, around 13 grid sites in the basin show 

considerably larger variations in relative humidity 

forecasts.  Table 2 shows the month-by-month average 

percentage (%) changes in basin relative humidity based 

on the ensemble average of estimates from five GCMs. 

 
3.3. Decadal changes in relative humidity 

 
Based on the Table 2, which showcases the average 

change (%) over the basin in relative humidity based on 

the ensemble average of projections from five GCMs, the 

following inferences can be drawn: 

 
RCP 2.6: The relative humidity shows a mixed 

pattern of increase and decrease over the basin across 

different months and time series. While some periods 
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Fig. 3. Average daily mean relative humidity (%) over the basin during 1986 -2005 

 
 

TABLE 3 

 

Variations in the Average Mean Relative Humidity (%) across the Bhima Sub-Basin 

 Considering GCM and Scenario Uncertainties 

 

Period Max. Mean Min. 
Max. % 

change 

Mean % 

change 

Min. % 

Change 

2021-2040 63 60.63 58.75 2.02 -1.81 -4.86 

2041-2060 63.08 60.88 58.04 2.15 -1.41 -6.01 

2061-2080 62.78 60.66 56.38 1.67 -1.77 -8.7 

2081-2100 62.76 59.69 52.76 1.64 -3.34 -14.56 
 

Note: The average mean relative humidity over the basin during 1986-2005 is 61.75% 

 

 

exhibit a significant increase, such as in June and 

November during 2021-2040 and 2041-2060, there are 

instances of significant decrease as well, particularly in 

March and April. 

 

RCP 4.5: The relative humidity demonstrates a 

fluctuating pattern, with both positive and negative 

changes across different months and time periods. 

Notably, the months of February, March, and April 

experience a decrease in relative humidity in the latter half 

of the century (2081-2100). 

 

RCP 6.0: Relative humidity experiences a notable 

decrease over the basin, especially in the latter time 

periods (2061-2080 and 2081-2100) for most months, 

with the most significant reductions seen in the months 

February, March, and April. 

 

RCP 8.5: The relative humidity displays a consistent 

decreasing trend throughout the future time periods across 

all months and time series. Particularly substantial 

reductions are observed in the months of February, March, 

and April, especially in the latter half of the century 

(2081-2100). 

 

These inferences suggest that different RCP 

scenarios have varying impacts on the relative humidity 

over the basin, with RCP8.5 indicating the most 

significant and consistent decrease, followed by RCP6.0, 

RCP4.5, and RCP2.6, in that order. 

 

3.4. Quantification of uncertainty in statistical 

downscaling 

 

Statistical downscaling helps provide detailed 

information at finer resolutions for understanding regional 

impacts and adapting to changes. Thus, it's crucial to 

measure the uncertainty linked with climate change 

impacts. This study evaluates results from General 

Circulation Models (GCMs) using four different 

Representative Concentration Pathway (RCP) scenarios to 

understand the level of climate change, considering both



 

 

LADDIMATHA et al.: STATISTICAL DOWNSCALING AND PROJECTIONS OF RELATIVE HUMIDITY  

21 

 

 
 

Fig. 4. Spatial maps (top 4 panels) and histograms (bottom 4 panels) showing the percentage change in average daily mean 
relative humidity projected from ensemble averages in the RCP 2.6 scenario. The red line in the histograms denotes 

the mean percentage change 
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Fig. 5. Spatial maps and histograms showing the percentage change in average daily mean relative humidity projected 

from ensemble averages in the RCP 4.5 scenario 
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Fig. 6. Spatial maps and histograms showing the percentage change in average daily mean relative humidity projected from 
ensemble averages in the RCP 6.0 scenario 
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Fig. 7. Spatial maps and histograms showing the percentage change in average daily mean relative humidity projected 

from ensemble averages in the RCP 8.5 scenario 
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TABLE 4 

 

Fluctuations in Average Mean Relative Humidity (%) across the Bhima Sub-Basin (Scenario Uncertainty) 

 

Period Max. Mean Min. Max. % change Mean % change Min. % Change 

RCP 2.6 

2021-2040 62.99 60.891 58.791 2.42 -0.99 -4.4 

2041-2060 62.55 60.947 60.347 1.7 -0.9 -1.88 

2061-2080 61.43 60.332 59.832 -0.11 -1.9 -2.71 

2081-2100 61.49 60.393 59.693 -0.01 -1.8 -2.94 

RCP 4.5 

2021-2040 62.36 60.762 60.162 1.4 -1.2 -2.18 

2041-2060 62.89 60.891 59.741 2.26 -0.99 -2.86 

2061-2080 62.81 61.562 60.412 2.13 0.1 -1.77 

2081-2100 62.25 60.147 58.547 1.21 -2.2 -4.8 

RCP 6.0 

2021-2040 63.33 60.332 58.332 2.98 -1.9 -5.15 

2041-2060 64.21 60.209 58.209 4.4 -2.1 -5.35 

2061-2080 63.42 58.917 56.417 3.12 -4.2 -8.27 

2081-2100 61.47 55.965 51.465 -0.06 -9 -16.32 

RCP 8.5 

2021-2040 62.99 61.193 60.093 2.43 -0.5 -2.29 

2041-2060 63.54 61.039 59.439 3.31 -0.1 -3.35 

2061-2080 61.83 59.125 55.725 0.53 -5 -9.39 

2081-2100 61.56 58.864 56.064 0.1 -5.1 -8.84 

 

 

 
 

Fig. 8. Representation of GCM and Scenario Uncertainty in Climate 

Change Impact on Average Mean Relative Humidity over the 
Bhima Sub-Basin 

 

GCM and scenario uncertainties. To simplify, we 

averaged data across the basin rather than analyzing every 

grid in the IMD. Figs. 8-9 and Tables 3-4 show the 

expected changes in climate variables from 2021 to 2100 

compared to the historical period (1986-2005). We used a 

box-and-whisker plot to understand the data patterns and 

identify uncertainty levels. 

 

Looking at Table 3 and Fig. 8, we see a decrease in 

the average percentage change for relative humidity over 

time. The box plot for 2041-2060 shows a balanced 

distribution, while projections for 2021-2040, 2061-2080, 

and 2081-2100 have skewed distributions, indicating 

higher uncertainty, especially in later years. 

 

To gain a comprehensive understanding of the 

spatial variability of uncertainty propagation, our analysis 

focused on the GCM, incorporating scenario uncertainty 

in climate change impacts on average mean relative 

humidity. Table 4 delineates alterations in the average 

mean relative humidity. In Fig. 9, scenario uncertainty for 

the average mean relative humidity is illustrated through 

skewed box plots for projections during the 2061-2080 

and 2081-2100 time periods for RCP 2.6, RCP 6.0, and 

RCP 8.5. Their median values deviate within the range of 

-1.18% to -5.1% from the historical observed value. 

Moreover, relatively less uncertain projections are 

discernible in the symmetric box plots for the 2041-2060 

time slots. 
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Fig. 9. Depiction of Scenario Uncertainty in Climate Change Impact on Average Daily Mean Relative Humidity Across All Four RCP Scenarios 

 

 

 

4. Conclusions 

 

The study examines the changes in average daily 

mean relative humidity over Bhima sub-basin under 

different Representative Concentration Pathway (RCP) 

scenarios. The analysis demonstrates a consistent decline 

in average daily mean relative humidity across all RCP 

scenarios, suggesting a potential drying trend in the 

concerned sub-basins. The results underline the 

significance of considering various climate change 

scenarios, especially the higher emission pathways like 

RCP 6.0 and RCP 8.5, which exhibit more drastic declines 

in relative humidity. The presence of unusual occurrences 

in certain time periods emphasizes the need for continued 

monitoring and adaptive measures to mitigate potential 

adverse impacts on ecosystems and water resources in the 

sub-basins.  

 

While many previous studies have attempted to 

comprehend the climate system and enhance its 

simulation, the reduction of uncertainties in future 

projections remains limited. The investigations concerning 

climate change impact assessment, accomplished through 

downscaled General Circulation Model (GCM) outputs, 

are constrained by a range of uncertainties associated with 

the GCM utilized and scenario variability. Employing a 

box-and-whisker plot in this analysis revealed trends in 

data projections, indicating a heightened uncertainty over 

time. Specifically, the data distributions in the 2061-2080 

and 2081-2100 time slots displayed asymmetrical box 

plots and skewed patterns. As a result, the study expresses 

a greater degree of confidence in the projections for the 

nearer future (i.e., 2021-2040) due to the symmetric data 

distribution, compared to those for the distant future 

(2081-2100). These findings offer valuable insights for 

evaluating the evolving climate conditions, facilitating the 

formulation of robust and resilient policies for natural 

resource management and climate change mitigation in 

the Bhima sub-basin. These insights can be effectively 

communicated to local authorities through a 

comprehensive policy document. 
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