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ABSTRACT. This study investigates the anticipated impacts of climate change on key sectors such as agriculture,
hydrology, and irrigation management through the analysis of future relative humidity scenarios. Employing the Change
factor method, we downscale daily mean relative humidity across the Bhima sub-basin using an ensemble of statistically
downscaled global climate model simulations. Our focus lies in assessing changes in average daily mean relative
humidity under various Representative Concentration Pathway (RCP) scenarios. The findings reveal a consistent decline
in relative humidity across all RCP pathways, with higher emission scenarios like RCP 6.0 and RCP 8.5 exhibiting more
pronounced reductions. Furthermore, the study highlights the presence of uncertainties in future projections, emphasizing
the need for continued monitoring and adaptive measures to mitigate potential adverse impacts on ecosystems and water
resources. Utilizing a box-and-whisker plot, the analysis underscores heightened uncertainty over time, with
asymmetrical data distributions and skewed patterns for future periods, suggesting greater confidence in nearer-term
(2021-2040) projections compared to distant future (2081-2100) estimations. The insights provided furnish crucial
information for the formulation of robust policies concerning natural resource management and climate change mitigation
within the Bhima sub-basin. These findings are instrumental in enlightening and directing local authorities towards the
creation of a comprehensive policy framework customized to the unique characteristics of the region.

Key words — Statistical downscaling, Change factor, Future projections, Relative humidity, RCPs scenarios,
Bhima sub-basin.
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1. Introduction

The amount of water vapour in the air relative to
saturation is known as relative humidity (RH). Its
prediction plays a crucial role in increasing the accuracy
of weather forecasting as it is a key indicator of
precipitation forecasting. The change in saturated vapour
pressure, which is also influenced by variations in wind
speed, solar radiation, pressure, temperature, and air
moisture content, causes a change in the RH. In the
scientific community, the RH is thought to be a sensitive
parameter because it influences many aspects of biotic and
abiotic entities. Human, animal, and plant health are
influenced by RH fluctuations, affecting the spread of
pests and diseases and can create environments that either
foster or inhibit the proliferation of pathogens and pests,
directly impacting the health of living organisms (Wu, X.
et al., 2016, Godde et al., 2021).Variations in RH can lead
to moisture-related issues in buildings, including mold
growth, deterioration of building materials, compromised
structural integrity, emphasizing the importance of
considering RH in construction and building maintenance
(Chowdhary et al., 2013, Berger et al., 2015).

Evaporation and transpiration processes are
profoundly impacted by changes in RH. High RH levels
can impede the evaporation of water from surfaces,
affecting processes like drying and water cycle dynamics
(Li, Z., et al., 2021). Additionally, RH levels influence
transpiration rates in plants, impacting their water
regulation and overall growth (Chia & Lim, 2022).
Understanding and addressing the implications of RH
variations across these diverse domains are crucial for
various fields, including public health, architecture,
environmental science, and agriculture. Incorporating
effective RH management strategies can help mitigate
potential risks and optimize conditions for human, animal,
and plant well-being, as well as for sustainable structural
design and environmental management.

Relative humidity can be linked to several dynamic
processes, including advection, convection, and
subsistence, which drive temperature variations.
Additionally, RH is associated with diverse forms of
diabatic heating, such as the absorption of radiation & the
release of latent heat. The phase changes in the
atmosphere, like cloud formation and precipitation, further
contribute to these properties (Dinh & Fueglistaler, 2019).
These inherent characteristics of RH explain its wide-
spread application in various contexts: (i) its integration in
mesoscale models to parameterize cloud radiative effects
(Park et al., 2018); (ii) inclusion in crop simulation
models, demonstrated by the Erosion Productivity Impact
Calculator (EPIC) model (Wu, Y et al., 2021); (iii)
utilization in estimating evapotranspiration, such as in the
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Penman-Monteith model (Moratiel et al., 2019); (iv)
incorporation in climate change impact models
(Javadinejad et al., 2020; Bourdin et al., 2021; Shad et al.,
2022); (v) its role in modeling greenhouse gases ; (Vi)
application in analyzing urban environments (Kayes et al.,
2019); and (vii) its relevance in hydrologic models (Ricard
& Anctil, 2019). Therefore, it becomes imperative to
evaluate the implications of climate change attributed to
RH at both global and local scales, considering its
significance across multiple scientific disciplines and its
impact on various environmental processes.

For researchers and decision-makers evaluating the
influence of climate change on aspects such as agriculture,
hydrology, and irrigation management, it is essential to
have access to future scenarios of relative humidity.
According to Auer et al. (2021) scenarios enable a more
comprehensive understanding of the potential impacts of
climate change on various sectors and facilitate the
development of appropriate adaptation and mitigation
strategies to address the challenges posed by changing
relative humidity conditions. The future is inherently
unpredictable and difficult to foresee accurately.
However, a scenario offers a credible depiction of
potential future developments. To evaluate the uncertainty
and gaps in knowledge linked to the future, a range of
scenarios are employed. These scenarios help in
understanding and planning for a spectrum of potential
outcomes, allowing for more comprehensive and
adaptable strategies to navigate the uncertainties ahead
(IPCC 2018). Global climate models (GCMs) play a
crucial role in formulating projections of future climate
change based on predefined emission scenarios (Anandhi
et al., 2009). However, the direct application of GCM
output at a regional scale is hindered by the discrepancy in
spatial resolutions between GCMs and local observations,
as well as the requirements for conducting local impact
assessments (Fowler et al., 2007). This necessitates the
use of downscaling techniques to bridge the gap between
the global scale represented by GCMs and the finer,
localized scale needed for accurate regional impact
assessments.

Researchers have adopted several approaches to
develop future climate scenarios at a regional scale,
namely, drawing analogies with distinct climatic zones or
specific historical time periods (Degroot et al., 2022),
utilizing  global climate model data through
straightforward  adjustments of  present climate
observations - commonly known as the change factor
methodology (Anandhi et al, 2011) & employing
advanced statistical & dynamical downscaling techniques
to derive more refined projections, as highlighted by
studies such as Anandhi et al. (2011), Ghosh et al., (2012)
and Ahmed & Kazi (2013). These methodologies enable
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Fig. 1. Location map of the Bhima sub-basin; Upper Bhima (K5) and Lower Bhima (K6) (study area)

understanding of regional climate changes and help to
generate more accurate and localized climate projections.
The objective of this study is to evaluate the performance
of the Change Factor (CF) method for statistically
downscaling future scenarios of relative humidity.

2. Data and methodology

2.1. Study area

The Bhima River originates in the rain shadow
region of the Western Ghats in India and serves as a
significant tributary of the Krishna River. The Bhima sub-
basin (as shown in Fig. 1), covering an area of 70,263
km? is situated between latitudes 15° N to 20° N &
longitude 73° E to 78° E. Flowing southeast through
Maharashtra for approximately 750 kilometers, it shares
the catchment basins of Karnataka and Telangana states.
About two-thirds of the population in this basin depends
on agriculture as a primary source of income & livelihood.
Agricultural activities here consume a substantial amount
of water & studies by Garg et al. (2011), Surinaidu (2013),
Kumbhar, 2014 & Udmale et al. (2014) highlight potential
impacts of climate change on the water resources sector,
including prolonged droughts, reduced monsoon rainfall,
environmental degradation ecosystem imbalances (Samal
& Gedam, 2021). Hence, it is imperative that the local
government is informed of the need for robust & resilient
policies to manage natural resources & implement climate
change mitigation measures in the Bhima sub-basin."

2.2. Data
Climate research offers a plausible depiction of the

future and its progression, considering various inputs such
as greenhouse gas emissions, socio-economic changes,
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technological advancements, and more. These inputs serve
as crucial components for climate modeling.
Consequently, the acquisition of climate data is essential
for predicting climate-induced impacts on ecosystems (De
Caceres et al., 2018). The Intergovernmental Panel on
Climate Change's (IPCC) Fifth Assessment Report (AR5)
identifies Representative Concentration Pathways (RCPs)
as key scenarios for climate change studies. These
pathways, including RCP8.5, RCP6, RCP4.5, & RCP2.6,
serve as benchmarks for understanding potential future
climate conditions. This research specifically focuses on
downscaling relative humidity from Global Circulation
Models (GCMs) using Representative Concentration
Pathways (RCPs) such as RCP 2.6, 4.5, RCP 6.0, & RCP
8.5. GCMs enable the estimation of potential climate
changes based on greenhouse gas concentrations and can
simulate the climate system's reliability using
mathematical functions (Nahar & Sharma, 2017).

Global Climate Models (GCMs) function at a coarse
scale, creating a disparity between their capabilities & the
hydrological needs required for impact studies. To bridge
this gap, Wilby et al. (2004) devised statistical models that
establish connections between the coarse-scale GCM
outputs and regional hydrological variables, necessary for
assessing the impacts of a changing climate, using
observed datasets at a finer scale. This study considers the
GCMs presented in Table 1, following the ranking
proposed by Raju et al. (2018) for the Godavari & Krishna
Basins in India, which include the Bhima sub-basin.

2.3.  Methodology

Statistical downscaling, emphasized by Tripathi et
al. (2006), is an efficient technique requiring less
computational effort compared to dynamic downscaling
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Fig. 2. Flowchart illustrating future scenario assessment with the change factor approach (Laddimath et al. 2021)

TABLE 1

List of General Circulation Models (GCMs) Utilized in the Research.

SI. No. Model Name Model Centre
MIROCESM_ Agency for Marine (Japan) - Earth Science
CHEM and Technology, Atmosphere and Ocean
2 MIROC5 research institute for environmental studies

Commonwealth Scientific and Industrial
Research Organization

Bjerknes Climate Research Centre,
Norwegian Meteorological Institute Norway

Geophysical Fluid Dynamics Laboratory
USA

3 CSIRO-Mk3.6

4 NorESM1 - M

5 GFDL-CM3

although it has certain limitations (Wangsoh et al., 2017).
This method is widely used to study the impact of climate
change on water resources in hydrological modelling.
Particularly. the Change Factor (CF) approach is notable
for its simplicity and efficiency in modeling multiple
Global Climate Models (GCMs) and emission scenarios
(Anandhi et al., 2011; Sunyer et al., 2015; Agilan and
Umamahesh, 2016; Hosseinzadehtalaei et al., 2018; Van
Uytven et al., 2020 and Vishnu et al., 2022).

"The CF method'" s reliability is due to its
adaptability, which allows for the direct scaling of local
data based on projected changes from GCM models. In
this approach, factors that represent the 'difference’ or
'ratio’ of each GCM for specific scenarios are computed.
These factors are then applied to observed historical
climate data (baseline period: 1986-2005) to project future
climate variables (long-term monthly average data for
future periods, such as 2021-2040, 2041-2060, etc.).
Comprehensive details on downscaling climate variables
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using the CF method can be found in studies by Anandhi
et al. (2011), Sunyer et al. (2015), and Agilan and
Umamahesh (2016). Additionally, a brief discussion
provided below:

The Additive Change Factor (ACF) and
Multiplicative Change Factor (MCF) methods are used for
scaling climate variables. The ACF method calculates the
difference between future and current GCM simulations
(Equation 1), while the MCF method calculates their ratio
(Equation 2). Future values are then scaled using these
factors, as shown in Equations 3 and 4. Fig. 2 describes
the procedure for assessment of future scenarios using CF.

CFaga = (GCMy — GCM,,) 1)
CFaut = (GCMy)/(GCMy) vy
LSfada; = LOb; + CFaqq (©)
LSfui = LOb; x CFpyy (@)

3. Results and discussion

3.1. Assessment of downscaled relative humidity
results

Historical values serve as references to compare and
contrast present and future climate conditions. A spatial
map of the historical era (1986-2005) shown in Fig. 3
illustrates the variation in daily mean relative humidity as
a percentage across the Bhima sub-basin, derived from
NCEP/NCAR data. This map highlights the spatial
distribution and patterns of relative humidity, providing a
baseline for assessing changes over time. By examining
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TABLE 2

Average change (%) in relative humidity over the basin derived from the ensemble average of projections from five GCMs

Scenario(s) Month Time Series Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2021-2040 0.8917 -7.8887 -16.785 -14.123 -1.1144 3.8976 1.0748 2.1975 -0.077 2.6965 3.2296 1.2677
2041-2060 3.1854 -6.5742 -13.124 -14.616 -6.9262 2.3553 2.2494 2.6462 0.3395 1.6325 1.9313 4.2085
RCP2.6 2061-2080 2.6111 -11.126 -16.511 -19.168 0.4679 3.8705 1.2704 2.2756 -1.2058 0.5901 3.4957 0.667
2081-2100 11573 -11.067 -15.636 -18.333 0.8745 4.9994 231 1.6628 -0.8979 1.7004 2.8114 0.7102
2021-2040 -0.1412 -12.019 -13.993 -13.822 -4.051 2.1303 1.9159 3.4683 0.045 1.7273 3.3887 3.0993
2041-2060 0.923 -7.8528 -11.721 -12.17 -0.9728 1.2822 2.2561 2.842 -0.2253 1.9957 1.7563 -0.6179
RCPAS 2061-2080 0.8461 -8.211 -12.775 -13.742 2.7883 7.4722 3.5385 2.9032 0.6287 2.5146 4.0032 -0.1538
2081-2100 -1.3983 -15.503 -19.92 -19.466 -1.9299 3.6556 3.0791 2.4374 -1.0647 1.0488 1.9383 -2.0644
2021-2040 1.0574 -10.356 -16.697 -19.661 -5.5808 4.419 2.2122 25641 -0.3602 1.2167 3.4427 1.1777
e 2041-2060 0.2551 -11.664 -17.915 -20.436 -3.9845 1.7085 0.9348 1.6392 -1.4638 0.6118 3.7601 2.732
2061-2080 -5.2801 -18.143 -17.715 -13.192 0.8045 3.8461 1.0787 0.8225 -3.5964 -1.6478 0.0586 -3.6799
2081-2100 -13.914 -27.534 -30.126 -25.043 -7.6125 1.0956 -0.8293 -0.8313 -4.6586 -4.777 -2.3178 -11.094
2021-2040 44582 -5.744 -11.994 -15.265 -2.0816 1.2757 1.1739 2.6695 -0.3575 1.9524 2.8715 4.0986
2041-2060 2.5455 -8.0595 -12.37 -13.663 -2.8678 3.7274 2.2855 3.2702 -0.0348 2.563 5.6103 4.4525
RCP8.S 2061-2080 -4.7727 -19.594 -27.34 -23.837 -6.6166 0.044 14333 22867 -1.295 -0.3286 0.2377 -2.7837
2081-2100 -3.8087 -18.043 -29.229 -23.359 -5.2111 1.4579 -0.0533 1.3844 -1.1825 -0.3839 -1.091 -4.897

these historical trends, one can identify areas of significant
deviation and better understand the impacts of climate
variability on the region. This analysis is crucial for
developing adaptive strategies & enhancing the resilience
of water resources management in the Bhima sub-basin.

3.2. Projection of future changes of downscaled
relative humidity

The percentage (%) change in daily mean relative
humidity is calculated utilizing equation 5 as outlined
below. Spatial maps and histograms depicting the
percentage change in the average daily mean relative
humidity, estimated from ensemble averages in RCP 2.6,
4.5, 6.0, and 8.5 scenarios, are presented in Figures 4, 5, 6,
and 7 respectively.

T2-Tq

%A= x 100 (5)

1
T, and T, represent historical and future periods
respectively.

According to the ensemble average for the RCP 2.6
scenario, the anticipated relative humidity shows a
declining trend in comparison to historical values, with
values of -1.0%, -0.85%, -1.85%, and -1.8% for each of
the 20 years intervals from 2021 to 2100 (i.e. 2021-40;
2041-60; 2061-80 & 2081-2100). About 12 grid sites in
the basin show considerably larger variations in forecasts
of mean decreasing relative humidity from 2061 to 2080.
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According to the RCP 4.5 scenario, relative humidity will
decrease between 2021 and 2100 by -1.05%, -1.0%,
+0.1%, and -2.5% compared to historical values. About 11
grid sites in the basin show considerably larger changes in
relative humidity forecasts from 2081 to 2100.

From 2021 through 2100, the RCP6.0 scenario
indicates declining trends in relative humidity with -1.8%,
-2.1%, -4.0% and -9.0% reductions from historical values.
From 2081 to 2100, around ten grid sites in the basin
show comparatively larger variations in relative humidity
forecasts. The RCP 8.5 scenario also indicates declining
trends in relative humidity from 2021 to 2100, with -0.5%,
-0.1%, -5.0% and -5.0% reductions from historical values.
From 2081 to 2100, around 13 grid sites in the basin show
considerably larger variations in relative humidity
forecasts. Table 2 shows the month-by-month average
percentage (%) changes in basin relative humidity based
on the ensemble average of estimates from five GCMs.

3.3. Decadal changes in relative humidity

Based on the Table 2, which showcases the average
change (%) over the basin in relative humidity based on
the ensemble average of projections from five GCMs, the
following inferences can be drawn:

RCP 2.6: The relative humidity shows a mixed
pattern of increase and decrease over the basin across
different months and time series. While some periods
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TABLE 3

Variations in the Average Mean Relative Humidity (%) across the Bhima Sub-Basin
Considering GCM and Scenario Uncertainties

Period Max. Mean Min. l\c/lhaz;;;/eo ’\:ﬁ::g? gﬂdgnzﬁz
2021-2040 63 60.63 58.75 2.02 -1.81 -4.86
2041-2060 63.08 60.88 58.04 2.15 -1.41 -6.01
2061-2080 62.78 60.66 56.38 1.67 -1.77 -8.7
2081-2100 62.76 59.69 52.76 1.64 -3.34 -14.56

Note: The average mean relative humidity over the basin during 1986-2005 is 61.75%

exhibit a significant increase, such as in June and
November during 2021-2040 and 2041-2060, there are
instances of significant decrease as well, particularly in
March and April.

RCP 4.5: The relative humidity demonstrates a
fluctuating pattern, with both positive and negative
changes across different months and time periods.
Notably, the months of February, March, and April
experience a decrease in relative humidity in the latter half
of the century (2081-2100).

RCP 6.0: Relative humidity experiences a notable
decrease over the basin, especially in the latter time
periods (2061-2080 and 2081-2100) for most months,
with the most significant reductions seen in the months
February, March, and April.

RCP 8.5: The relative humidity displays a consistent
decreasing trend throughout the future time periods across
all months and time series. Particularly substantial
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reductions are observed in the months of February, March,
and April, especially in the latter half of the century
(2081-2100).

These inferences suggest that different RCP
scenarios have varying impacts on the relative humidity
over the basin, with RCP8.5 indicating the most
significant and consistent decrease, followed by RCP6.0,
RCPA4.5, and RCP2.6, in that order.

3.4. Quantification of uncertainty in statistical
downscaling

Statistical downscaling helps provide detailed
information at finer resolutions for understanding regional
impacts and adapting to changes. Thus, it's crucial to
measure the uncertainty linked with climate change
impacts. This study evaluates results from General
Circulation Models (GCMs) using four different
Representative Concentration Pathway (RCP) scenarios to
understand the level of climate change, considering both
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TABLE 4

Fluctuations in Average Mean Relative Humidity (%) across the Bhima Sub-Basin (Scenario Uncertainty)

Period Max. Mean Min. Max. % change Mean % change  Min. % Change
RCP 2.6
2021-2040 62.99  60.891 58.791 2.42 -0.99 -4.4
2041-2060 62.55  60.947 60.347 1.7 0.9 -1.88
2061-2080 61.43  60.332 59.832 -0.11 -1.9 271
2081-2100 61.49  60.393 59.693 -0.01 -1.8 -2.94
RCP 4.5
2021-2040 62.36  60.762 60.162 1.4 -1.2 -2.18
2041-2060 62.89  60.891 59.741 2.26 -0.99 -2.86
2061-2080 62.81 61562 60.412 2.13 0.1 -1.77
2081-2100 62.25  60.147 58.547 121 2.2 -4.8
RCP 6.0
2021-2040 63.33  60.332 58.332 2.98 -1.9 -5.15
2041-2060 6421  60.209 58.209 4.4 21 -5.35
2061-2080 63.42 58917 56.417 3.12 4.2 -8.27
2081-2100 61.47  55.965 51.465 -0.06 -9 -16.32
RCP 8.5
2021-2040 62.99  61.193 60.093 2.43 0.5 -2.29
2041-2060 6354  61.039 59.439 3.31 0.1 -3.35
2061-2080 61.83  59.125 55.725 0.53 -5 -9.39
2081-2100 6156  58.864 56.064 0.1 5.1 -8.84
box-and-whisker plot to understand the data patterns and
‘ ' identify uncertainty levels.
66 |
S Looking at Table 3 and Fig. 8, we see a decrease in
g — — - the average percentage change for relative humidity over
Eeof [ ] | I time. The box plot for 2041-2060 shows a balanced
2 ‘ distribution, while projections for 2021-2040, 2061-2080,
2% L 4‘ and 2081-2100 have skewed distributions, indicating
§ ss| L | higher uncertainty, especially in later years.
%sa‘ - To gain a comprehensive understanding of the
= spatial variability of uncertainty propagation, our analysis
i focused on the GCM, incorporating scenario uncertainty
‘ : . in climate change impacts on average mean relative
WAy ZeER e humidity. Table 4 delineates alterations in the average

Fig. 8. Representation of GCM and Scenario Uncertainty in Climate

Change Impact on Average Mean Relative Humidity over the
Bhima Sub-Basin

GCM and scenario uncertainties. To simplify, we
averaged data across the basin rather than analyzing every
grid in the IMD. Figs. 8-9 and Tables 3-4 show the
expected changes in climate variables from 2021 to 2100
compared to the historical period (1986-2005). We used a
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mean relative humidity. In Fig. 9, scenario uncertainty for
the average mean relative humidity is illustrated through
skewed box plots for projections during the 2061-2080
and 2081-2100 time periods for RCP 2.6, RCP 6.0, and
RCP 8.5. Their median values deviate within the range of
-1.18% to -5.1% from the historical observed value.
Moreover, relatively less uncertain projections are
discernible in the symmetric box plots for the 2041-2060
time slots.
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Fig. 9. Depiction of Scenario Uncertainty in Climate Change Impact on Average Daily Mean Relative Humidity Across All Four RCP Scenarios

4.  Conclusions

The study examines the changes in average daily
mean relative humidity over Bhima sub-basin under
different Representative Concentration Pathway (RCP)
scenarios. The analysis demonstrates a consistent decline
in average daily mean relative humidity across all RCP
scenarios, suggesting a potential drying trend in the
concerned sub-basins. The results underline the
significance of considering various climate change
scenarios, especially the higher emission pathways like
RCP 6.0 and RCP 8.5, which exhibit more drastic declines
in relative humidity. The presence of unusual occurrences
in certain time periods emphasizes the need for continued
monitoring and adaptive measures to mitigate potential
adverse impacts on ecosystems and water resources in the
sub-basins.

While many previous studies have attempted to
comprehend the climate system and enhance its
simulation, the reduction of uncertainties in future
projections remains limited. The investigations concerning
climate change impact assessment, accomplished through
downscaled General Circulation Model (GCM) outputs,
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are constrained by a range of uncertainties associated with
the GCM utilized and scenario variability. Employing a
box-and-whisker plot in this analysis revealed trends in
data projections, indicating a heightened uncertainty over
time. Specifically, the data distributions in the 2061-2080
and 2081-2100 time slots displayed asymmetrical box
plots and skewed patterns. As a result, the study expresses
a greater degree of confidence in the projections for the
nearer future (i.e., 2021-2040) due to the symmetric data
distribution, compared to those for the distant future
(2081-2100). These findings offer valuable insights for
evaluating the evolving climate conditions, facilitating the
formulation of robust and resilient policies for natural
resource management and climate change mitigation in
the Bhima sub-basin. These insights can be effectively
communicated to local authorities through a
comprehensive policy document.
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