A bayesian analysis of the annual maximum temperature using generalized extreme value distribution
DOI:
https://doi.org/10.54302/mausam.v72i3.1310Keywords:
Generalized Extreme Value (GEV) distribution, Gumbel distribution, Maximum Likelihood estimate (ML), Markov Chains Monte-Carlo method (MCMC), Maximum temperature, Return levelAbstract
The annual maximum temperature was modeled using the Generalized Extreme Value (GEV) distribution to Jijel weather station. The Mann-Kendall (MK) and Kwiatkowski Phillips, Schmidt and Shin (KPSS) tests suggest a stationary model without linear trend in the location parameter. The Kurtosis and the Skewness statistics indicated that the normality assumption was rejected. The Likelihood Ratio test was used to determine the best model and the goodness-of-fit tests showed that our data is suitable with a stationary Gumbel distribution. The Maximum Likelihood estimation method and the Bayesian approach using the Monte Carlo method by Markov Chains (MCMC) were used to find the parameters of the Gumbel distribution and the return levels were obtained for different periods.
JEL Classification: C1, C13, C46, C490.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MAUSAM
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published by MAUSAM are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone.
Anyone is free:
- To Share - to copy, distribute and transmit the work
- To Remix - to adapt the work.
Under the following conditions:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even
commercially.